Software Verification for Space

Applications
Part 2. Autonomous Systems

= o B ~ -‘?_a
g - : T ;

G. Brat
USRA/RIACS

Main Objectives

Implement a sustained and affordable human and
robotic program to explore the solar system and beyond,;

Extend human presence across the solar system,
starting with a return to the Moon by the year 2020, in
preparation of the exploration of Mars and other
destination;

Develop the innovative technologies, knowledge, and
infrastructures, both to explore and to support decisions
about the destinations for human exploration;

Promote international and commercial participation in
exploration to further U.S. scientific, security, and
economic interests.

Many Robotic Missions

1 l
ldentify Key | Robotic | Human Missions |
Targets | Trailblazers | to the Moon l

éii ACOOO—

Moon

Testbed Testbed Testbed

P\?JS't and %r?ﬁ?fm M ars
ater and Life;
Testbeds and Resources A A A A O ¢
Mars Recon Phoenix Mobile Sample Mars Fleld Mar
Rovers Orbiter Lander Lab Return Scout Lab Scput
|
I

O @
Mars Mars Mars Q
3

Underground Oceans, v
BIO!OQlCal C“ﬁmlstr',’, = H
and Life :
X Cassini Cassini \ Jupiter |
Saturn Titan lcy Moons |

Arrival Landing Orbiter . oons

=arth-Like Planets

and Life arrestrial Planet

Finder olar
Space |
merferometry Missior S

2000 2010 2020

Mars Science Laboratory

* Mission:
— Long range traverses (< 6km)
— Collect samples
— Analyze samples on-board

900 kg rover baseline
112 kg instruments & support
Two arms

NASA Software Challenges

Need to develop three systems for each mission:
— Flight software

— Ground software

— Simulation software

Flight software

— Rovers will require more adaptable software to do
long traverses for example

Ground software
— Need planning software for planning operations

— Need autonomous execution for uploading and
executing commands on ISS or on-orbit

V&V of a different type of software systems

Autonomous systems: 2005

Interface to users/operations

Generates plans of
activities given high-
level goals and

activity constraints

EUROPA Il —
(Planner)

Transform plans
into scheduled
low-level control
actions

. Interface
2

PLEXIL

N

a

Formal execution
language that issue
low-level commands

Controlled Hardware

V&V Strategy

Interface to users/operations

» Graph manipulation errors:
static analysis, symbolic
execution and advanced testing
* Meta-rule errors: model
checking, static analysis

(Planner)

* Run time errors: static analysis

» Safety properties: model

checking and compositional

verification

 Other properties of interest:
*Real-time
*Convergence/divergence

PLEXIL

EUROPAIl € —

d Model A

L)

J
] Interface 4/\

« Ambuigity, inconsistency,
completeness: symbolic
model checking
 Functional regs: symbolic
model checking

a

Controlled Hardware

Cancel at the end of 2005

Interface to users/operations

| Model |
EURC A || = 0

(Pl? y

CANCELLED!

TR T

Controlled Hardware

Autonomy for Operations Project:

e

Autonomy for Operations
— Pls: Jeremy Frank & Ari Jonsson
— PM: Robert Brummett

Project goal: =
— Develop and mature needed automation software

— capabilities for Constellation mission operations, onboard
— control, crew assistance and robotics.

Core capabilities
— Human in-the-loop automation
— Monitored execution
— Decision support
— Operation requirement studies
— Simulation and testbeds
— Application and prototypes
— Verification

Background

* Mission Operations
» Operating procedure generation
» Space flight operations planning
* Remote system operations (nominal and off-nominal)
« Support of crew control (nominal and off-nominal)
- Crewed Spacecraft Operations
« Spacecraft systems operations (nominal and off-nominal)
- Robotic Operations
» Explorers and scouts on the lunar surface
 Assistants and tools for human explorers
- Lunar Infrastructure Operations
 Control of habitats, communications and power equipment, etc.
- Unmanned Spacecraft Operations
* Remote system operations (nominal and off-nominal)

Operation challenges

* Mission Operations

 State of art : Many tools, lack of interoperability

* Need: Flexible, evolvable and sustainable mission operations paradigm
- Crewed Spacecraft Operations

 State of art : Crew relies on ground to support and control operations

* Need: Crews able to operate systems and own tasks more

iIndependently
- Robotics Operations

 State of art: Requires multiple operators for command and monitoring

* Need: Effective sustainable robot operations with less human oversight
- Lunar Surface Operations

 State of art : Ground-based operation of most surface assets

* Need: Effective sustainable robot operations with less human oversight

- Unmanned Spacecraft Operations
« State of art: Requires direct human command and monitoring
* Need: Effective and reliable operations with less human oversight

Approach: A40

- Key elements of technology
» Re-usable, interoperable and adaptable architecture
* Data-driven general and re-usable modules
« Common data specifications support adaptability, evolvability and
interoperability of tools based on standards developed by CSI
» Automation capabilities
* Monitoring and analysis of telemetry and system states

* Decision Support: From help for users to on-board decision-making
« Execution: Carry out decisions and plans, from humans and automation

 Human interaction support
* Adjustable automation allows humans to handle more or less as needed
 Assistance provides summary of information, options, evaluations,
warnings
« Complementary capabilities based on computational power

- Flexible and reusable - on ground and on board
» Enable transition from initial manual flights to sustainable operations
« Same core capabilities used on ground, in flight and on lunar surface

Executive

- Executive S

* Lightweight engine for executing PLEXIL plans S
« Small memory and processor footprint

» General and reusable PLEXIL
« Same engine for many applications

» Compiles on VxWorks, Linux, Solaris, OSX On ¥ ;

. . . niversal Executive

» Simple, well defined interface to low level
control Interface to systems

« Commanding interface
» Sensing interface
* Provides tools for users
» Verifying, validating, simulating, and
debugging
» Applications
* Drives procedure execution automation
» Executes plans for on-board operations
» Runs K10 rover activity plans on board &

Procedure representation

* Procedures

* Notion generalizes a number of existing concepts:
Command sequences, plans, checklists, diagnosis procedures, etc.

* Procedures for both humans and automation

* PRL: Human-understandable; e.g., operations procedures
« PLEXIL: Machine-understandable; e.g., plans and command sequences
* Need a combination to enable adjustable automation

* Procedure Representation Language (PRL)

* Combines ISS procedure schema with PLEXIL schema
« XML-based language

 Elements of PRL

* Meta data provides names, context, version, etc. for procedure
» Control data provides logical control and safety conditions

» Steps and nodes structure procedure for human readability

* Instructions specify instructions, commands, etc.

Executive validation

* Main focus: how to validate procedures?

* We have five major efforts under way

— Definition of formal semantics of PLEXIL
language

— Model-based generation of test plans for
PLEXIL

— Model checking of PLEXIL procedures
— Simulation of PRL procedures
— Model checking of PRL procedures

Procedure representation

- PLEXIL

- Plan Execution Interchange Language
 For describing plans, sequences, procedures, scripts, etc.
« Simple syntax that is very powerful
» Timed command sequences, event driven sequences, monitors
» Concurrent execution, repeating sequences, etc.
» Contingencies, conditionals, etc.
« Designed to facilitate validation and certification
» Guarantees unambiguous execution
* Provides guarantees against deadlocks
» Simple syntax facilitates validation and checking

- General and reusable
- PLEXIL is logical automation core of PRL

« Control logic and safety conditions in PRL map to PLEXIL
» Execution semantics and properties of PLEXIL extend to PRL

Model checking of procedures

« We investigate two ways of applying model checking to
procedures

« Compositional model checking using LTSA:

— Build Labelled Transition System Analyser (LTSA) models for
 underlying physical system (e.g., using FSM models for simulation)
» procedures

— Define safety properties of interest for the procedures

— Model check the LTSA models using compositional techniques
to alleviate the state explosion problems

« SMART model checking:
— Build SMART models of PLEXIL macros
— Check for deadlock and behavioral correctness properties

— Investigate scalability of the approach by defining appropriate
abstractions

Formal semantics of execution

language

 The definition of formal semantics of PLEXIL

language is necessary for the development of
formal verification tools

* Our approach:

— Described behavioral formal semantics of PLEXIL in
LTSA models
* Detection of subtle execution errors in PLEXIL models
» Automatic translation of PLEXIL procedures into LTSA models

— Described formal semantics of PLEXIL in PVS

* Prove determinism and behavioral determinism for the PLEXIL
language

Behavioral models for PLEXIL

* Behavioral model for the state waiting of a
PLEXIL node

" re
Start Cond ition T b ndition
/

3/

Composition of node models

LLLLLL

PLEXIL Plan

LLLLLL

LLLLLL

Composed LTSA Model for PLEXIL Plan

LLLLLL

Translation of System Models

XML
Model
For
System

Translator

Interface

\/

LTSA Model for System Interface

Example of safety property in LTSA

enterRPCopen

enterRPCCinhibited

enterRPCopen

fire enterRPCCinhilenterRPCopen enterRPCcenterRPCCenabled

FireProof1 | e P P /fh\
v iqv iov (g3v (gv (VY (gV (7V

{enterix. CC{enterin: CC{enterkrCC{enterix. C{enterkrCCi {enterl(rCC {enterkrCC{enterRPCCenabled, enterRPCopen, fire}

\

' A \ VAN) v
enterRPCCenabled enterRPCCinhibited enterRPCcenterRPCCinhibited
enterRPCclosed fire fire
enterRPCCenabled

enterRPCclosed

Compositional Verification

System Model

o Full
Compositional
PLEXIL Plan Model p) > LTSA
Verification Model

Safety Property

I I
I I

D - -

I I

Component A I Component C | 1
I I

) I I

I I

I I

I I

Reconfiguration

« Design-level: decompose (architecture)

— establish contracts (assume-guarantee pairs) between
components to guarantee key system-level properties

« Code-level: verify and test
— verify or test each component against its individual contracts

« Reconfiguration
— verify new components against contracts of substituted ones

Compositional Verification

Decompose properties of system (M, || M,) in
properties of its components
Does M, satisfy P?
— typically a component is designed to satisfy its
requirements in specific contexts / environments

Assume-guarantee reasoning: introduces

H 11

assumption A representing M,’s “context”
Simplest assume-guarantee rule

1. (A M, (P) “discharge'j the
2. {true) M, (A) 4 assumption

(truey M || M, (P)

Model-based Plexil testing

Test Plan
Castor Test Plan
Tool Generator
(Java PathFinder
Model checking
tanl)

The goal is to automatically generate
procedures for testing PLEXIL based on the
PLEXIL grammar

— The Castor-based translation is done

— The test plan generation is inherited from previous
research

PLEXIL
Test plans
I (XML Files)

PLEXIL

Grammar
(XML

Schema)

Java
representati
on

PRL Example

Original procedure

EPS

0.0,

RPCM Type V.
RPC lout
> 3.7A,32ms
RPCM Type | &
V(RPC 17 & 18)
lout > 12.3A 32ms
RPCM Type IV:
RPC lout > 132 to
144A,10t0 12
ms
or
RPCM Vin
<1050V (107.8V
Firmware
controller value to
account for sensor
error) for more
than 50 ms

Nominal Config:
RPCM X: Firmware
Trip Function ~ Ena
Close Override - Ena

L] 1 [RPCM Health

3.209 RPCM TRIP

(POST CCS)

(EPS/5A - ALLFIN 7) Page 1 of 11 pages

(©)

« sel RPCM X
RPCM X
Is the Integ Counter INg 2 fLoss of Comm. Al
incrementing? Gata from this RPCM is
Yeos suspect

3 | RPCM Firmware
Health

{3.210 RPCM LOSS OF COMM (POST CCS)}, all (SODF:

o sel Firmware

EPS: MALFUNCTION: SECONDARY POWER SYSTEM)

Is ORU Health - OK?

Yes

6 | Identify Type of RPCM
Trip

=1 4 JFirmware error. Al 5
sensor data from this « Continue to troubleshoot
RPCM s suspect Trip

At least one RPC has an
attention symbol indicating
Trip, and at least one RPC
is still closed

pgill

No RPCs with attention
symbols (Trip).

Atleast one RPC has an
attention symbol (Trip), and
no RPCs are in the Close
state.

7 | Possible transient 8
C8W message. No RPCs « MCC-H will further
are tripped. troubleshoot

9 | Check Undervolt Trip
Flags

RPCM X
« sel Input Undervoltage

Trip - X

Trip Awaiting Recovery — X

“Trip Recovery Initiated — X

“Trip Awaiting Recovery - X

and Trip Recovery Initiated
X

Trip - X and Trip Recovery
Initiated — X

No Undervolt Trip Flags

RPCM input undervolt

RPC(s) tripped due to
ble overcurrent

Al displays in this
procedure are on
the PCS

C&W advisory

message is at the

RPCM level but trip

indication is for the
C.

For RPCM
navigation, refer to
Table 1 atend of
procedure.

30 MAR 04

10782.doc

Encoding in PRL

<Step stepld="step3">
<StepTitle>
<StepNumber>3</StepNumber>
<Text>RPCM Firmware Health</Text>
</StepTitle>
<InstructionBlock>
<Instruction instructionID="step3 i1">
<Verifylnstruction>
<VerifyGoal>
<TargetDescription>
<Text>Verify ORU Health OK</Text>
</TargetDescription>

Procedure authoring and checking

* Authoring

* Graphical and Textual Editing

» Syntax checking and Syntax constraints
* Viewing

* Static and Dynamic views on procedures
* Procedure Checking

* Check procedures against flight rules
» Check procedures against constraints
* Assist in evaluation of simulation results
» General interface supports plug and play of
validation components
» Configuration and workflow management

* Support workflow, including repositories,
signoffs, etc.

Vakie

Procedure editing environment

e S,

Interoperation layer

w (Interactive
Procedure
) Procedure
editor
test

Simulation of PRL procedures

 Build finite state machine (FSM) models
describing the underlying physical system (at
least, its interface to the operator world)

« Simulate the execution of the procedure in
conjunction with the FSMs

* |dentify missing pre-conditions for nominal
state execution

Model-based simulation of

24 oy a5

gEs

I— 5 e s

o

Procedural S
Display

Failure mode
and fault events
injection

o

Procedure and Display

Hangar

Deploy

FreeFlyerGN.

Mini AERCam Procedure
SYSTEM Power Up and Configuration

3 VERIFY Hangar HEALTH
CS_GUI; Hangar Health & Status

Hangar Health & Status

cs

cs

‘Health Overview'
Verify POST

Verify Temperature
Verify Voltages

Verify Propulsion Recharge Tank Pressure

4. VERIFY FF HEALTH
CS_GuUI
‘Free Flyer Health’

Verify Comm Uplink
Verify Comm Downlink

Verify Temperature
Verify Voltages
Verify Tank Pressure

Verify Signal Strength > 90% i
Verify PropellantLevel > 90% gy SN SETN U2 S EC
Verify Battery Level >90% B T
‘GNC ot S’:i ~ 2> ;
Verify GNC Mode -Free Drift — —
N
- JARRRVAY JAY
"ﬁg P—
e > R Sicoas | S| Vit

-Uplink OK
-Downlink OK

-Temperature OK
-Voltage OK
-Pressure OK

-Pass
-Temperature OK
-Voltage OK
-Pressure OK

Attitude Free Drfft

Translation Free D)

ey N T Pl Wi

ot T[0T v [Fom— [

TouSpood [0 e T [BT00 o
5w .

[
e M g
g N -
P,

=]
= T

i

METIAZI
G108 10
Feerieiesn

St
[E——
s

e bk

L
Auto. I
Translation Contjol

State Machine based
Simulator

Flight Rules
” Verifier

;
9

U
Logger :> Playback

Model checking of PRL Procedures

XML
Model
For
System

Interface

_/,

l

Translator

l

System Model

PLEXIL Plan Model

Safety Property

Simulator

T Error trace

Full
JPF
Model

Java Pathfinder

* It is an extensible explicit state software model checker
for Java byte code.
 Open-sourced on 28 April 2005

— http://sourceforge.net/projects/javapathfinder/

« 2003 TGIR Award winner atascheduing

VM observer heuristics

verification report

o I|brar¥ property choice error path
verification target abstraction checker generator .
(Java bytecode program) Step #11 Thread #0
p_— oldclassic.java:65 event1.wait_for_event();
*class il e ”1s‘ta te oldclassic.java:37 wait();
B JPF virtual machine ™ -
Jar mgnt Step #14 Thread #1
\ . oldclassic.java:95 event2.wait_for_event();
oldclassic.java:37 wait();
search strategy thread stacks
Thread: Thread-0
at java.lang.Object.wait(java/lang/Object.java:429)
error- at Eventwait_for_event(oldclassic.java:37)
end — .
path
[Thread: Thread-1
at java.lang.Object.wait(java/lang/Object.java:429)
prop erty at Eventwait_for_event(oldclassic.java:37)
ViOIatlon —X_’*::::‘:’:::::::::::::::::::

Decision Support V&V

 Validation of planning models by
translating them into model checking
models

 Validation of plans and plan robustness

« Automatic generation of test cases to test
against flight rules

Validation of planning models

« The goal is to study validation of planning models by
translating them into SAL model checking models

* Approach:

— Definition of a simple planning language, called APPL (A Plan
Preparation Language), based on NDDL that is more amenable
to formal verification

— Automatic translation from APPL models to NDDL models

— Automatic translation from APPL models to SAL models
« We also study the relationship between APPL and the language
unifying NDDL and Casper
— Investigation issues of representation in SAL so that scalability
problem can be avoided
« For example, the representation of time and timers

Automatic generation of tests for

blanner

* The goal is to automatically generate test cases

for planners so that we can test against flight
rules

* Process:

— Modeling flight rules in appropriate language

« We started with LTL (linear temporal logic), but are
considering others

— Generate coverage conditions that cover flight rules
accordlng to “ unlque cause” criterion

“Unique cause” is an extension of the commonly used
MC/DC coverage criterion mandated by the FAA

— Generate test case in the form of Europa goals (or
partial plans) using the coverage conditions

Test case generation for NDDL

Flight
(English)
4
Domain
Model ——» EUROPA
(NDDL)
4

Flight

Rules

(patterns)
(£

Test
Suite

(NDDL cmds

= goals

= partial plans)

4

Plans J

FAIL

Flight
Rules
(LTL, ATL)

Generate

Coverage
Conditions

(set of
LTL, ATL

Translate

