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Main Objectives

• Implement a sustained and affordable human and
robotic program to explore the solar system and beyond;

• Extend human presence across the solar system,
starting with a return to the Moon by the year 2020, in
preparation of the exploration of Mars and other
destination;

• Develop the innovative technologies, knowledge, and
infrastructures, both to explore and to support decisions
about the destinations for human exploration;

• Promote international and commercial participation in
exploration to further U.S. scientific, security, and
economic interests.
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Mars Science Laboratory
• Mission:

– Long range traverses (< 6km)
– Collect samples
– Analyze samples on-board



NASA Software Challenges
• Need to develop three systems for each mission:

– Flight software
– Ground software
– Simulation software

• Flight software
– Rovers will require more adaptable software to do

long traverses for example
• Ground software

– Need planning software for planning operations
– Need autonomous execution for uploading and

executing commands on ISS or on-orbit
• V&V of a different type of software systems



Autonomous systems: 2005
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V&V Strategy
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• Run time errors: static analysis
• Safety properties: model
checking and compositional
verification
• Other properties of interest:

•Real-time
•Convergence/divergence

• Graph manipulation errors:
static analysis, symbolic
execution and advanced testing
• Meta-rule errors: model
checking, static analysis

• Ambuigity, inconsistency,
completeness: symbolic
model checking
• Functional reqs: symbolic
model checking
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Autonomy for Operations Project:
2006

• Autonomy for Operations
– PIs: Jeremy Frank & Ari Jonsson
– PM: Robert Brummett

• Project goal:
– Develop and mature needed automation software
– capabilities for Constellation mission operations, onboard
– control, crew assistance and robotics.

• Core capabilities
– Human in-the-loop automation
– Monitored execution
– Decision support
– Operation requirement studies
– Simulation and testbeds
– Application and prototypes
– Verification



Background

• Mission Operations
• Operating procedure generation
• Space flight operations planning
• Remote system operations (nominal and off-nominal)
• Support of crew control (nominal and off-nominal)

• Crewed Spacecraft Operations
• Spacecraft systems operations (nominal and off-nominal)

• Robotic Operations
• Explorers and scouts on the lunar surface
• Assistants and tools for human explorers

• Lunar Infrastructure Operations
• Control of habitats, communications and power equipment, etc.

• Unmanned Spacecraft Operations
• Remote system operations (nominal and off-nominal)



Operation challenges
• Mission Operations

• State of art : Many tools, lack of interoperability
• Need: Flexible, evolvable and sustainable mission operations paradigm

• Crewed Spacecraft Operations
• State of art : Crew relies on ground to support and control operations
• Need: Crews able to operate systems and own tasks more
independently

• Robotics Operations
• State of art: Requires multiple operators for command and monitoring
• Need: Effective sustainable robot operations with less human oversight

• Lunar Surface Operations
• State of art : Ground-based operation of most surface assets
• Need: Effective sustainable robot operations with less human oversight

• Unmanned Spacecraft Operations
• State of art: Requires direct human command and monitoring
• Need: Effective and reliable operations with less human oversight



Approach: A4O
• Key elements of technology

• Re-usable, interoperable and adaptable architecture
• Data-driven general and re-usable modules
• Common data specifications support adaptability, evolvability and
interoperability of tools based on standards developed by CSI

• Automation capabilities
• Monitoring and analysis of telemetry and system states
• Decision Support: From help for users to on-board decision-making
• Execution: Carry out decisions and plans, from humans and automation

• Human interaction support
• Adjustable automation allows humans to handle more or less as needed
• Assistance provides summary of information, options, evaluations,
warnings
• Complementary capabilities based on computational power

• Flexible and reusable - on ground and on board
• Enable transition from initial manual flights to sustainable operations
• Same core capabilities used on ground, in flight and on lunar surface



Executive
• Executive

• Lightweight engine for executing PLEXIL plans
• Small memory and processor footprint

• General and reusable
• Same engine for many applications

• Compiles on VxWorks, Linux, Solaris, OSX
• Simple, well defined interface to low level
control

• Commanding interface
• Sensing interface

• Provides tools for users
• Verifying, validating, simulating, and
debugging

• Applications
• Drives procedure execution automation
• Executes plans for on-board operations
• Runs K10 rover activity plans on board

Interfaces

PLEXIL

Universal Executive

Interface to systems



Procedure representation
• Procedures

• Notion generalizes a number of existing concepts:
Command sequences, plans, checklists, diagnosis procedures, etc.

• Procedures for both humans and automation
• PRL: Human-understandable; e.g., operations procedures
• PLEXIL: Machine-understandable; e.g., plans and command sequences
• Need a combination to enable adjustable automation

• Procedure Representation Language (PRL)
• Combines ISS procedure schema with PLEXIL schema
• XML-based language

• Elements of PRL
• Meta data provides names, context, version, etc. for procedure
• Control data provides logical control and safety conditions
• Steps and nodes structure procedure for human readability
• Instructions specify instructions, commands, etc.



Executive validation

• Main focus: how to validate procedures?
• We have five major efforts under way

– Definition of formal semantics of PLEXIL
language

– Model-based generation of test plans for
PLEXIL

– Model checking of PLEXIL procedures
– Simulation of PRL procedures
– Model checking of PRL procedures



Procedure representation

• PLEXIL
• Plan Execution Interchange Language

• For describing plans, sequences, procedures, scripts, etc.
• Simple syntax that is very powerful

• Timed command sequences, event driven sequences, monitors
• Concurrent execution, repeating sequences, etc.
• Contingencies, conditionals, etc.

• Designed to facilitate validation and certification
• Guarantees unambiguous execution
• Provides guarantees against deadlocks
• Simple syntax facilitates validation and checking

• General and reusable
• PLEXIL is logical automation core of PRL

• Control logic and safety conditions in PRL map to PLEXIL
• Execution semantics and properties of PLEXIL extend to PRL



Model checking of procedures
• We investigate two ways of applying model checking to

procedures
• Compositional model checking using LTSA:

– Build Labelled Transition System Analyser (LTSA) models for
• underlying physical system (e.g., using FSM models for simulation)
• procedures

– Define safety properties of interest for the procedures
– Model check the LTSA models using compositional techniques

to alleviate the state explosion problems
• SMART model checking:

– Build SMART models of PLEXIL macros
– Check for deadlock and behavioral correctness properties
– Investigate scalability of the approach by defining appropriate

abstractions



Formal semantics of execution
language

• The definition of formal semantics of PLEXIL
language is necessary for the development of
formal verification tools

• Our approach:
– Described behavioral formal semantics of PLEXIL in

LTSA models
• Detection of subtle execution errors in PLEXIL models
• Automatic translation of PLEXIL procedures into LTSA models

– Described formal semantics of PLEXIL in PVS
• Prove determinism and behavioral determinism for the PLEXIL

language



Behavioral models for PLEXIL

• Behavioral model for the state waiting of a
PLEXIL node
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Composition of node models
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Translation of System Models
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Example of safety property in LTSA
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Compositional Verification

System Model

PLEXIL Plan Model

Safety Property

Compositional
Verification

Full
LTSA
Model



Compositional V&V

Component A Component B

• Design-level: decompose (architecture)
– establish contracts (assume-guarantee pairs) between

components to guarantee key system-level properties

• Code-level: verify and test
– verify or test each component against its individual contracts

• Reconfiguration
– verify new components against contracts of substituted ones

Component C

Reconfiguration



Compositional Verification

M2

M1

A

satisfies P?

• Decompose properties of system (M1 || M2) in
properties of its components

• Does M1 satisfy P?
– typically a component is designed to satisfy its

requirements in specific contexts / environments
• Assume-guarantee reasoning: introduces

assumption A representing M1’s “context”
• Simplest assume-guarantee rule

“discharge” the 
assumption

1.    〈A〉      M1     〈P〉
2. 〈true〉     M2    〈A〉

3. 〈true〉 M1 || M2  〈P〉



Model-based Plexil testing

• The goal is to automatically generate
procedures for testing PLEXIL based on the
PLEXIL grammar
– The Castor-based translation is done
– The test plan generation is inherited from previous

research
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PRL Example

<Step stepId="step3">
  <StepTitle>
   <StepNumber>3</StepNumber>
     <Text>RPCM Firmware Health</Text>
   </StepTitle>
   <InstructionBlock>
     <Instruction instructionID="step3_i1">
       <VerifyInstruction>
         <VerifyGoal>
            <TargetDescription>
               <Text>Verify ORU Health OK</Text>
            </TargetDescription>
….

Original procedure Encoding in PRL



Procedure authoring and checking

• Authoring
• Graphical and Textual Editing
• Syntax checking and Syntax constraints

• Viewing
• Static and Dynamic views on procedures

• Procedure Checking
• Check procedures against flight rules
• Check procedures against constraints
• Assist in evaluation of simulation results
• General interface supports plug and play of
validation components

• Configuration and workflow management
• Support workflow, including repositories,
signoffs, etc.



Interoperation layer

Procedure editing environment

Automated checker 
and verifier

System state 
simulation with 

property checking

Interactive
Procedure

test

Procedure 
editor



Simulation of PRL procedures

• Build finite state machine (FSM) models
describing the underlying physical system (at
least, its interface to the operator world)

• Simulate the execution of the procedure in
conjunction with the FSMs

• Identify missing pre-conditions for nominal
state execution



Model-based simulation of
procedures
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System Model
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Java Pathfinder
• It is an extensible explicit state software model checker

for Java byte code.
• Open-sourced on 28 April 2005

– http://sourceforge.net/projects/javapathfinder/
• 2003 TGIR Award winner



Decision Support V&V

• Validation of planning models by
translating them into model checking
models

• Validation of plans and plan robustness
• Automatic generation of test cases to test

against flight rules



Validation of planning models

• The goal is to study validation of planning models by
translating them into SAL model checking models

• Approach:
– Definition of a simple planning language, called APPL (A Plan

Preparation Language), based on NDDL that is more amenable
to formal verification

– Automatic translation from APPL models to NDDL models
– Automatic translation from APPL models to SAL models

• We also study the relationship between APPL and the language
unifying NDDL and Casper

– Investigation issues of representation in SAL so that scalability
problem can be avoided

• For example, the representation of time and timers



Automatic generation of tests for
planner

• The goal is to automatically generate test cases
for planners so that we can test against flight
rules

• Process:
– Modeling flight rules in appropriate language

• We started with LTL (linear temporal logic), but are
considering others

– Generate coverage conditions that cover flight rules
according to “unique cause” criterion

• “Unique cause” is an extension of the commonly used
MC/DC coverage criterion mandated by the FAA

– Generate test case in the form of Europa goals (or
partial plans) using the coverage conditions



Test case generation for NDDL
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