
Software Verification for Space
Applications

Part 2. Autonomous Systems

G. Brat
USRA/RIACS

Main Objectives

• Implement a sustained and affordable human and
robotic program to explore the solar system and beyond;

• Extend human presence across the solar system,
starting with a return to the Moon by the year 2020, in
preparation of the exploration of Mars and other
destination;

• Develop the innovative technologies, knowledge, and
infrastructures, both to explore and to support decisions
about the destinations for human exploration;

• Promote international and commercial participation in
exploration to further U.S. scientific, security, and
economic interests.

Many Robotic Missions

2000 2010 2020

Moon

Mars

Outer Moons

Extrasolar
Planets

Mars Science Laboratory
• Mission:

– Long range traverses (< 6km)
– Collect samples
– Analyze samples on-board

NASA Software Challenges
• Need to develop three systems for each mission:

– Flight software
– Ground software
– Simulation software

• Flight software
– Rovers will require more adaptable software to do

long traverses for example
• Ground software

– Need planning software for planning operations
– Need autonomous execution for uploading and

executing commands on ISS or on-orbit
• V&V of a different type of software systems

Autonomous systems: 2005

Controlled Hardware

Interface to users/operations

EUROPA II
(Planner)

ModelGenerates plans of
activities given high-
level goals and
activity constraints

PLEXIL
Formal execution
language that issue
low-level commands

Interface
Transform plans
into scheduled
low-level control
actions

V&V Strategy

PLEXIL

EUROPA II
(Planner)

Interface

Controlled Hardware

Model

Interface to users/operations

• Run time errors: static analysis
• Safety properties: model
checking and compositional
verification
• Other properties of interest:

•Real-time
•Convergence/divergence

• Graph manipulation errors:
static analysis, symbolic
execution and advanced testing
• Meta-rule errors: model
checking, static analysis

• Ambuigity, inconsistency,
completeness: symbolic
model checking
• Functional reqs: symbolic
model checking

Cancel at the end of 2005

Controlled Hardware

Interface to users/operations

EUROPA II
(Planner)

Model

PLEXIL
Interface

CANCELLED!

Autonomy for Operations Project:
2006

• Autonomy for Operations
– PIs: Jeremy Frank & Ari Jonsson
– PM: Robert Brummett

• Project goal:
– Develop and mature needed automation software
– capabilities for Constellation mission operations, onboard
– control, crew assistance and robotics.

• Core capabilities
– Human in-the-loop automation
– Monitored execution
– Decision support
– Operation requirement studies
– Simulation and testbeds
– Application and prototypes
– Verification

Background

• Mission Operations
• Operating procedure generation
• Space flight operations planning
• Remote system operations (nominal and off-nominal)
• Support of crew control (nominal and off-nominal)

• Crewed Spacecraft Operations
• Spacecraft systems operations (nominal and off-nominal)

• Robotic Operations
• Explorers and scouts on the lunar surface
• Assistants and tools for human explorers

• Lunar Infrastructure Operations
• Control of habitats, communications and power equipment, etc.

• Unmanned Spacecraft Operations
• Remote system operations (nominal and off-nominal)

Operation challenges
• Mission Operations

• State of art : Many tools, lack of interoperability
• Need: Flexible, evolvable and sustainable mission operations paradigm

• Crewed Spacecraft Operations
• State of art : Crew relies on ground to support and control operations
• Need: Crews able to operate systems and own tasks more
independently

• Robotics Operations
• State of art: Requires multiple operators for command and monitoring
• Need: Effective sustainable robot operations with less human oversight

• Lunar Surface Operations
• State of art : Ground-based operation of most surface assets
• Need: Effective sustainable robot operations with less human oversight

• Unmanned Spacecraft Operations
• State of art: Requires direct human command and monitoring
• Need: Effective and reliable operations with less human oversight

Approach: A4O
• Key elements of technology

• Re-usable, interoperable and adaptable architecture
• Data-driven general and re-usable modules
• Common data specifications support adaptability, evolvability and
interoperability of tools based on standards developed by CSI

• Automation capabilities
• Monitoring and analysis of telemetry and system states
• Decision Support: From help for users to on-board decision-making
• Execution: Carry out decisions and plans, from humans and automation

• Human interaction support
• Adjustable automation allows humans to handle more or less as needed
• Assistance provides summary of information, options, evaluations,
warnings
• Complementary capabilities based on computational power

• Flexible and reusable - on ground and on board
• Enable transition from initial manual flights to sustainable operations
• Same core capabilities used on ground, in flight and on lunar surface

Executive
• Executive

• Lightweight engine for executing PLEXIL plans
• Small memory and processor footprint

• General and reusable
• Same engine for many applications

• Compiles on VxWorks, Linux, Solaris, OSX
• Simple, well defined interface to low level
control

• Commanding interface
• Sensing interface

• Provides tools for users
• Verifying, validating, simulating, and
debugging

• Applications
• Drives procedure execution automation
• Executes plans for on-board operations
• Runs K10 rover activity plans on board

Interfaces

PLEXIL

Universal Executive

Interface to systems

Procedure representation
• Procedures

• Notion generalizes a number of existing concepts:
Command sequences, plans, checklists, diagnosis procedures, etc.

• Procedures for both humans and automation
• PRL: Human-understandable; e.g., operations procedures
• PLEXIL: Machine-understandable; e.g., plans and command sequences
• Need a combination to enable adjustable automation

• Procedure Representation Language (PRL)
• Combines ISS procedure schema with PLEXIL schema
• XML-based language

• Elements of PRL
• Meta data provides names, context, version, etc. for procedure
• Control data provides logical control and safety conditions
• Steps and nodes structure procedure for human readability
• Instructions specify instructions, commands, etc.

Executive validation

• Main focus: how to validate procedures?
• We have five major efforts under way

– Definition of formal semantics of PLEXIL
language

– Model-based generation of test plans for
PLEXIL

– Model checking of PLEXIL procedures
– Simulation of PRL procedures
– Model checking of PRL procedures

Procedure representation

• PLEXIL
• Plan Execution Interchange Language

• For describing plans, sequences, procedures, scripts, etc.
• Simple syntax that is very powerful

• Timed command sequences, event driven sequences, monitors
• Concurrent execution, repeating sequences, etc.
• Contingencies, conditionals, etc.

• Designed to facilitate validation and certification
• Guarantees unambiguous execution
• Provides guarantees against deadlocks
• Simple syntax facilitates validation and checking

• General and reusable
• PLEXIL is logical automation core of PRL

• Control logic and safety conditions in PRL map to PLEXIL
• Execution semantics and properties of PLEXIL extend to PRL

Model checking of procedures
• We investigate two ways of applying model checking to

procedures
• Compositional model checking using LTSA:

– Build Labelled Transition System Analyser (LTSA) models for
• underlying physical system (e.g., using FSM models for simulation)
• procedures

– Define safety properties of interest for the procedures
– Model check the LTSA models using compositional techniques

to alleviate the state explosion problems
• SMART model checking:

– Build SMART models of PLEXIL macros
– Check for deadlock and behavioral correctness properties
– Investigate scalability of the approach by defining appropriate

abstractions

Formal semantics of execution
language

• The definition of formal semantics of PLEXIL
language is necessary for the development of
formal verification tools

• Our approach:
– Described behavioral formal semantics of PLEXIL in

LTSA models
• Detection of subtle execution errors in PLEXIL models
• Automatic translation of PLEXIL procedures into LTSA models

– Described formal semantics of PLEXIL in PVS
• Prove determinism and behavioral determinism for the PLEXIL

language

Behavioral models for PLEXIL

• Behavioral model for the state waiting of a
PLEXIL node

Start Cond ition T

Ancestor Invariant

F

Ancestor End T

Pre

condition

1

2

3

FAILURE

true

 false,

unknown

WAITIN

G

FINISH

ED

FINISH

ED
SKIPPE

D

SKIPPE

D

 Repeat

Until

Condition
T?

WAITIN

G

true

false

FINISH

ED

EXECU

TING

Composition of node models

Composed LTSA Model for PLEXIL Plan

PLEXIL
node

PLEXIL
node

PLEXIL
node

PLEXIL
node

PLEXIL Plan

Translation of System Models

Translator
XML

Model
For

System
Interface

LTSA Model for System Interface

Example of safety property in LTSA

FireProof1

{enterRPCCenabled, enterRPCclosed, fire}

enterRPCopen

enterRPCCinhibited

fire

{enterRPCCenabled, enterRPCclosed, fire}

enterRPCopen

enterRPCCinhibited

{enterRPCCinhibited, enterRPCclosed, fire}

enterRPCopen

enterRPCCenabled

{enterRPCCenabled, enterRPCCinhibited, enterRPCclosed, enterRPCopen, fire}

enterRPCclosed

{enterRPCCenabled, enterRPCopen, fire}

enterRPCCinhibited

{enterRPCCinhibited, enterRPCclosed, fire}

enterRPCopen

enterRPCCenabled

fire

enterRPCclosed

{enterRPCCinhibited, enterRPCopen, fire}

enterRPCCenabled

enterRPCclosed

{enterRPCCenabled, enterRPCopen, fire}

enterRPCCinhibited

fire

0 1 2 3 4 5 6 7

Compositional Verification

System Model

PLEXIL Plan Model

Safety Property

Compositional
Verification

Full
LTSA
Model

Compositional V&V

Component A Component B

• Design-level: decompose (architecture)
– establish contracts (assume-guarantee pairs) between

components to guarantee key system-level properties

• Code-level: verify and test
– verify or test each component against its individual contracts

• Reconfiguration
– verify new components against contracts of substituted ones

Component C

Reconfiguration

Compositional Verification

M2

M1

A

satisfies P?

• Decompose properties of system (M1 || M2) in
properties of its components

• Does M1 satisfy P?
– typically a component is designed to satisfy its

requirements in specific contexts / environments
• Assume-guarantee reasoning: introduces

assumption A representing M1’s “context”
• Simplest assume-guarantee rule

“discharge” the
assumption

1. 〈A〉 M1 〈P〉
2. 〈true〉 M2 〈A〉

3. 〈true〉 M1 || M2 〈P〉

Model-based Plexil testing

• The goal is to automatically generate
procedures for testing PLEXIL based on the
PLEXIL grammar
– The Castor-based translation is done
– The test plan generation is inherited from previous

research

Test Plan

Generation

PLEXIL

Grammar
(XML

Schema)

Castor

Tool

Java

representati

on

Test Plan

Generator
(Java PathFinder
Model checking

tool)

PLEXIL
Test plans
(XML Files)

PRL Example

<Step stepId="step3">
 <StepTitle>
 <StepNumber>3</StepNumber>
 <Text>RPCM Firmware Health</Text>
 </StepTitle>
 <InstructionBlock>
 <Instruction instructionID="step3_i1">
 <VerifyInstruction>
 <VerifyGoal>
 <TargetDescription>
 <Text>Verify ORU Health OK</Text>
 </TargetDescription>
….

Original procedure Encoding in PRL

Procedure authoring and checking

• Authoring
• Graphical and Textual Editing
• Syntax checking and Syntax constraints

• Viewing
• Static and Dynamic views on procedures

• Procedure Checking
• Check procedures against flight rules
• Check procedures against constraints
• Assist in evaluation of simulation results
• General interface supports plug and play of
validation components

• Configuration and workflow management
• Support workflow, including repositories,
signoffs, etc.

Interoperation layer

Procedure editing environment

Automated checker
and verifier

System state
simulation with

property checking

Interactive
Procedure

test

Procedure
editor

Simulation of PRL procedures

• Build finite state machine (FSM) models
describing the underlying physical system (at
least, its interface to the operator world)

• Simulate the execution of the procedure in
conjunction with the FSMs

• Identify missing pre-conditions for nominal
state execution

Model-based simulation of
procedures

Logger Playback

State Machine based
Simulator

Flight Rules
Verifier

Procedural
Display

Procedure and Display
Mini AERCam Procedure
SYSTEM Power Up and Configuration

Failure mode
and fault events

injection

Logger Playback

State Machine based
Simulator

Flight Rules
Verifier

Procedural
Display

Procedure and Display
Mini AERCam Procedure
SYSTEM Power Up and Configuration

Off

DockedDeploy

Free Flight

Attitude Free Drift

Auto.
Attitude Control

Translation Free Drift

Auto.
Translation Control

Off

On

OperationalNot Operational

Hangar

FreeFlyerGN&C

Gyro

Off

DockedDeploy

Free Flight

Attitude Free Drift

Auto.
Attitude Control

Translation Free Drift

Auto.
Translation Control

Off

On

OperationalNot Operational

Hangar

FreeFlyerGN&C

Gyro

Failure mode
and fault events

injection

System Model

PLEXIL Plan Model

Safety Property JPF Full
JPF

Model

Translator

XML
Model

For
System
Interface

Model checking of PRL Procedures
Off

DockedDeploy

Free Flight

Attitude Free Drift

Auto.
Attitude Control

Translation Free Drift

Auto.
Translation Control

Off

On

OperationalNot Operational

Hangar

FreeFlyerGN&C

Gyro

Off

DockedDeploy

Free Flight

Attitude Free Drift

Auto.
Attitude Control

Translation Free Drift

Auto.
Translation Control

Off

On

OperationalNot Operational

Hangar

FreeFlyerGN&C

Gyro

Error trace

Simulator

Java Pathfinder
• It is an extensible explicit state software model checker

for Java byte code.
• Open-sourced on 28 April 2005

– http://sourceforge.net/projects/javapathfinder/
• 2003 TGIR Award winner

Decision Support V&V

• Validation of planning models by
translating them into model checking
models

• Validation of plans and plan robustness
• Automatic generation of test cases to test

against flight rules

Validation of planning models

• The goal is to study validation of planning models by
translating them into SAL model checking models

• Approach:
– Definition of a simple planning language, called APPL (A Plan

Preparation Language), based on NDDL that is more amenable
to formal verification

– Automatic translation from APPL models to NDDL models
– Automatic translation from APPL models to SAL models

• We also study the relationship between APPL and the language
unifying NDDL and Casper

– Investigation issues of representation in SAL so that scalability
problem can be avoided

• For example, the representation of time and timers

Automatic generation of tests for
planner

• The goal is to automatically generate test cases
for planners so that we can test against flight
rules

• Process:
– Modeling flight rules in appropriate language

• We started with LTL (linear temporal logic), but are
considering others

– Generate coverage conditions that cover flight rules
according to “unique cause” criterion

• “Unique cause” is an extension of the commonly used
MC/DC coverage criterion mandated by the FAA

– Generate test case in the form of Europa goals (or
partial plans) using the coverage conditions

Test case generation for NDDL
IDE

Editor
Flight
Rules

(English)

Flight
Rules

(LTL, ATL)

Domain
Model

(NDDL)

Test
Case
Generator

Expand
Flight
Rules

(patterns)

Coverage
Conditions

(set of
LTL, ATL)

Generate

Translate

Test
Suite

(NDDL cmds
= goals

= partial plans)

EUROPA

Plans
FAIL

