
Software Verification for Space
Applications

Part 1. Static Analysis

Guillaume Brat

USRA/RIACS

Software blowup

8

1700

3

32

160

430

1

10

100

1000

10000

Voyager

(1977)

Galileo

(1989)

Cassini

(1997)

MPF

(1997)

Shuttle

(2000)

ISS

(2000)

Mission

L
in

e
s

o
f

C
o

d
e

 (
T

h
o

u
sa

n
d

s)

$165M
$125M

4 months
lost

Famous aerospace failures

>$1B

NASA Software Challenges
• Need to develop three systems for each mission:

– Flight software
– Ground software
– Simulation software

• Flight software
– Has to fit on radiation-hardened processors
– Limited memory resources
– Has to provide enough information for diagnosis
– Can be patched (or uploaded) during the mission

• Each mission has its own goals, and therefore, each software
system is unique!

• Cannot benefit from opening its source code to the public because
of security reasons.
– No open-source V&V

• Mission software is getting more complex.
– Large source code (~1 MLOC)
– The structure of the code is more complex

International Space Station
• International Space Station:

– Attitude control system, 1553 bus,
science payloads

– International development
(interface issues)

– Codes ranging from 10-50 KLOC
– A failure in a non critical system

can cause a hazardous situation
endangering the whole station

– Enormous maintenance costs
– Over 500 defects reported
– Over 3 MLOC by now

• SCR 25345 describes an issue where GNC Redundancy
Management (RM) does not appropriately reset “Indicate
Attitude Control Handover to RS" Flag .
o Flag set (4 occurrences since Feb’03 CCS R3 uplink)

o On GNC MDM failure
o SMTC loss of communication (triggers GNC failure response)
o Planned GNC MDM swaps

o If flag set, Autohandover to RS Enabled, RS is in Mode of CMG TA or
Indicator, and US is Master; FDIR will send an Off Nominal US to RS
H/O command.

o If this flag is not reset an attitude control force fight will occur.

“Are these problems that ANY sort of computational assistance will help?
I always knew that we couldn't build a complete system that would
automatically tell us what problems would occur with this or that software
change. But I am hoping that we can build tools that make things a whole
lot faster than they are now. “

Dan Duncavage, NASA JSC, June 2003

ISS problem example

Mars mission software
• Mars Path Finder:

– Code size: 140 KLOC
– Famous bug: priority inversion problem

• Deep Space One:
– Code size: 280 KLOC
– Famous bug: race condition problem in

the RAX software

• Mars Exploration Rovers:
– Code size: > 650 KLOC
– Famous bug: Flash memory problem

Mars Science Laboratory

Mars Science Laboratory
• Complicated Landing:

– no ground real time control
– The rover lands, the crane flies away

• Long autonomous traverses
– Automatic obstacle avoidance
– Recognize possible interesting science along the way

• Critical systems:
– Uses RTG (no solar panels) for power

• It’s a long mission, almost 2 years of rover operation
– Needs to be durable
– Plenty of time to recover in case of problems

How is the Software Verified?
• Testing
• Mars missions: high-fidelity test bench

– Runs 24 hours a day
– 8 hour test sessions: lost if a runtime error occurs

• Space Station:
– Critical software: on-ground simulator maintained at

Marshall Space Center
– Payloads:

• Independently verified by contractors
• NASA test requirement document

How effective is this?
• Badly re-initialized state variable for MPL: caused the

crash of the lander ($150M)
• Unit mismatch for MCO: caused the orbiter to miss its

orbit insertion and burn during re-entry ($85M)
• Thread priority inversion problem for MPF: 24 hours of

science data lost
• Flash memory problem for MER: rover paralyzed during

several days
• Science mission for the ISS currently under validation:

– Passes NASA test requirements
– But… 500+ defects reported

Software Development Process

Software
Architectural Design

System
Integration

System
Architectural Design

System
Requirements

Software
Requirements Analysis

Software
Qualification Testing

Software
Unit Testing

Software Coding

Software
Detailed Design

Software Integration

System
Qualification Testing

STATIC
ANALYSIS

Static Analysis

Static analysis offers compile-time techniques for predicting
safe and computable approximations to the set of values

arising dynamically at run-time when executing the program

the analysis is done
without executing the program

all possible values
(and more) are computed

We use abstract interpretation techniques
to extract a safe system of semantic equations

which can be resolved using lattice theory techniques
to obtain numerical invariants for each program point

Partial Error Coverage

Test cases & drivers

Integration
Testing

Unit-level
Testing

Conventional Testing

Static analyzers find runtime errors in programs.

They work like sophisticated compilers.

Control&Data Flow Analysis

Source Code Checking
Compiler Front End

Software Safety Analysis
Propagation Algorithm for
Identifying Run-Time Errors

Total Error Coverage

No input cases! No input drivers!

Sophisticated Static Analysis

color-coded reporting:
Green always correct
Red always incorrect
Orange may be incorrect
Gray never executed

Simple run-time error reporting

Static analysis

Defect Classes

• Static analysis is well-suited for catching runtime errors
– Array-out-bound accesses
– Un-initialized variables/pointers
– Overflow/Underflow
– Invalid arithmetic operations

• Also for program understanding
– Data dependences
– Control dependences
– Slicing
– Call graphs

• Potential applications to
– Convergence/divergence in floating point computations
– Unit mismatching
– Execution time predictions
– Memory usage predictions

Static Analysis Research Process

PolySpace
C-verifier

MPF DS1

ISS K9

CGS

precision scalability

usability

Experiments on
real NASA code

Identification of
technical gaps

Implementation of
research prototype

Identification of
commercial tools

MER

DS1

MPF

650KLoc

285KLoc

134KLoc

Found errors!
Un-initialized variables

Out-of-bound array accesses
Overflow/underflow problems

POLYSPACE C-VERIFIER

Limitations
Needed to modify the code slightly

Limited code size to ~40 KLoc
Got too many false positive

Analysis of MPF family

The MER Experiment
• We conducted extensive experiments with

PolySpace Verifier:
– Minors bugs found in MER
– Serious out-of-bounds array accesses found in an ISS

Science Payload
• Absence of runtime errors (80% precision)
• Useful: yes
• Effective: no

– It takes 24 hours to analyze 40 KLOC
– Difficulty to break down large systems into small

modules

What type of static analysis?

Software
Architectural Design

System
Integration

System
Architectural Design

System
Requirements

Software
Requirements Analysis

Software
Qualification Testing

Software
Unit Testing

Software Coding

Software
Detailed Design

Software Integration

System
Qualification Testing

CERTIFIERSDEBUGGERS

Practical Static Analysis

C Global Surveyor
(NASA Ames)

Scalability (KLOC)

Precision

1000

500

50

80% 95%

PolySpace
C-Verifier

DAEDALUS
100%

Coverity

Klocwork

days
hours

CERTIFIERS

seconds

DEBUGGERS

minutes

NASA Requirements

• Scalability:
– Analyze large systems in less than 24 hours
– Analysis time similar to compilation time for mid-size

programs
• Precision:

– At least 80%
– Informative: the analysis provides enough information

to diagnose a warning

C Global Surveyor
• Prototype analyzer

– Based on abstract interpretation
– specialized for NASA flight software

• Covers major pointer manipulation errors:
– Out-of-bounds array indexing
– Uninitialized pointer access
– Null pointer access

• Keeps all intermediate results of the analysis in
a human readable form: huge amount of artifacts

Abstract Interpretation

Program
semantics

Abstract
Semantics

Programming
Language
Definition

Defines operations allowed in the language:
assignments, conditionals, loops, functions, …

assigns meaning to a program
on a suitable concrete domain

Concrete
domain

Abstract
domain

Models some properties of concrete computations
Forgets about remaining information

γ concretization
abstraction α

Simple Example

E5 = E2 ∩ [1000, +∞[

E1 = {n ⇒ Ω}

E4 =〚n = n + 1〛E3

E3 = E2 ∩]-∞, 999]

E2 =〚n = 0〛E1 ∪ E4

1

2

3

4

5

n = 0;

while n < 1000 do

 n = n + 1;

end

exit

[0,1000]

[0,999]

[1,1000]

1000

]-∞,+∞[

Simple Example

n = 0;

while n < 1000 do

 n = n + 1;

end

exit

[0,1000]

[0,999]

[1,1000]

1000

]-∞,+∞[

In effect, the analysis
has automatically
computed numerical
invariants!

Array Bound Checking

• Arrays are the basic data structures in embedded
programs

• Out-of-bounds array access:
– One of the most common runtime errors
– One the most difficult to trace back

double a[10];

for (i = 0; i < 10; i++)

 a[i] = ...;

if (...)

 a[i] = ...;

0 <= i < 10

i = 10

Bug found in
an ISS

Science
Payload

Runtime Structure

Thread Thread Thread

Queue

Heap
Queue

Shallow

Large

MPF Flight Software Family

assign (double *p, double *q, int n) {

 int i;

 for (i = 0; i < n; i++)

 p[i] = q[i];

}

assign (A, B, 10) assign (&pS->f, &A[2], m)

10...1000 call sites

Thousands of such functions
Almost all of them contain loops

Fast Context Sensitivity

• Context-sensitivity is required
• We can’t afford performing 1000 fixpoint iterations

with widening and narrowing for each function
• Compute a summary of the function using a

relational numerical lattice

access(p[i], 0 <= i < n)

access(q[i], 0 <= i < n)

Byte-Based Pointer Model

• Pointer analyses commonly use symbolic
access paths into structures

• Mixing symbolic and numerical information is
difficult and costly

• We use a uniform byte-based representation
(sufficient for array bound checking)

&S.f[2][3]

&S + offset(f) + 2 * size(row) + 3 * size(elem)

Relational Domain
• Convex polyhedra are too costly (exponential

complexity)

• Weakly relational domain of Difference-Bound
Matrices (Mine 01):
– {x – y ≤ c, z – t ≤ c’, ...}
– Floyd-Warshall algorithm (shortest path):

• x – y ≤ c & y – z ≤ c’ ⇒ x – z ≤ c + c’
• x – y ≤ c, x – y ≤ c’ ⇒ x – y ≤ min (c, c’)

– Cubic time, quadratic space complexity

Expressiveness Problem
• Cannot express the invariant:

 0 ≤ offset ≤ n * sizeof (double)

• Solution: use auxiliary variables
‒ Split up the offset: offset = b + δ * u

‒ New invariant:
• b = 0
• u = sizeof (double)
• 0 ≤ δ ≤ n

base offset
relative offset

unit

Expressible as a DBM

Scalability Issues

• The domain of Difference Bound Matrices do not
scale

• Problem: strongly polynomial (worst-case
bounds always attained)

• Solution: split up the relations into small packets
using computational dependencies

Adaptive Variable Clustering

• x = y + c

..., x y, ...
P P’

x, y, ...

P U P’

C C’

C, C’
x – y ≤ c
y – x ≤ -c

Loops

• All variable modified within a loop are clustered
(implicit dependencies)

j = 1;

for (i = 0; i < n; i++) {

 j++;

 a[j] = ...;

}

i, j

j – n ≤ 0
j – i ≤ 1,

...

Memory Graph Construction

Abstract
Heap

(sound
approxima

tion)

thr1

f

thr2

init

g

Refined
Abstract

Heap

(sound
approxima

tion)
READ WRITE

ITERATE

Implementation of CGS

Database

Equations
for file1.c

Equations
for file2.c

Cluster of machines

Analyze
function f

Analyze
function g

Working with a Database
• We use PostgreSQL
• Mutual exclusion problems are cared for by the

database
• Simple interface using SQL queries
• Efficient communications require index

structures (B-Trees):
– Populating tables is slower
– Difficult to manage

• Granularity problems: splitting up large tables
into smaller ones

Parallel implementation

• We use the Parallel Virtual Machine (PVM)
• High-level interface for process creation and

communication
• Allows heterogeneous implementation: currently

a mix of C and OCaml
• Remote debugging is extremely difficult
• Design is difficult:

– Scheduling policies
– Granularity of computations

Effectiveness of Parallelization

Analysis Times

0

2000

4000

6000

8000

10000

12000

1 2 4 6 8

CPUs

S
e
c
o

n
d

s

DS1

MPF

The I/O Bottleneck

• The performance curve flattens: overhead of
going through the network

• MER takes a bit less than 24 hours to analyze:
– 70% of the time is spent in the interprocedural

propagation
– I/O times dominate (loading/unloading large tables)

• Under investigation: caching tables on machines
of the cluster and using PVM communication
mechanism (faster than concurrent database
access)

Experimental Results

2080%550550MER

2.580%280280DS1

1.580%140140MPF

8-1280%20140MPF

Analysis
Time

(hours)

PrecisionMax Size
Analyzed

Size
(KLOC)

Commercial tool C Global Surveyor

CGS Users

•Mars & Solar System Exploration (JPL)
• MER
• MSL

•Manned space missions: International Space Station &
Shuttle
• Urine Processing Assembly (20KLOC)
• Material Science Research Rack (82KLOC)
• Advanced Video Guidance System (12KLOC)
• Space Shuttle Main Engine Controller(?)
• Biological Research Project Rack Interface Controller (40KLOC)
• Centrifuge Rack Interface Controller (40KLOC)

•Independent Verification & Validation Center

Will include some C++

Done
without

daily
expert help

Heavy expert
help

CGS fact sheet
• Static analyzer for finding runtime errors in C programs

– Out-of-bound array accesses
– De-referencing null pointers
– Tested on MPF, DS1, and ISS flight software systems

• Developed (20 KLoc of C) at NASA Ames in ASE group
– A. Venet: no longer working at NASA
– G. Brat: brat@email.arc.nasa.gov
– S. Thompson: thompson@email.arc.nasa.gov

• Runs on Linux and Solaris platforms
– RedHat Linux 2.4

• Analysis can be distributed over several CPUs
– Using PVM distribution system

• Results available using SQL queries
– To the PostgreSQL database
– Graphical user interface

Future directions
• Need to move to analyzing C++

– C is the legacy language
– New development (CEV, CLV) is in C++

• C++ is a complicated language
– Dynamic allocation
– Virtual functions
– Object-oriented
– No thread standard package

• Our strategy
– Develop more than just static analysis tools
– Based them on the same language compilation

framework

A C++ tool suite

LLVM Compilation and Analysis Framework
•Open source
•Used by Apple for commercial products

MCP
Model Checker

TPGEN
Symbolic Execution

CGS++
Static Analysis

Common Interface (Eclipse, Web-based)

C++ tool suite flow

C++

MCP
Model Checker

TPGEN
Symbolic Execution

CGS++
Static AnalysisLLVM

toolbox

LLVM
GCC-based
Front End

LLVM
Framework

LLVM
bytecode

Tool interactions
MCP

Model Checker

TPGEN
Symbolic Execution

CGS++
Static Analysis

POR
abstractionAliasing?

Warning elimination

Path region selection

?

Conclusions
• Static analysis is useful for NASA software

– Certifies the absence of errors
– Does not require testing/simulation environment

• Static analysis is becoming practical
– Scales to large software (e.g., MER)
– Number of false positives is greatly reduced
– Analysis times are less than a day even for large software

• CGS (developed at NASA Ames Research Center)
– Catches pointer manipulation errors in embedded C programs
– Is applicable to large flight software

• We are working on a suite of C++ analysis tools
– Model checker
– Symbolic execution
– Static analysis

