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Abstract

A fundamental problem in business-to-business exchanges is the efficient design of mechanisms to promote cooperation and

coordination of various self-interested agents. We study the behavior of artificial agents in a bidding and contracting framework

[Eur. J. Oper. Res. (2002); D.J. Wu, P. Kleindorfer, J.E. Zhang, Integrating Contracting and Spot Procurement with Capacity

Options, Working Paper, Department of Operations and Information Management, The Wharton School, University of

Pennsylvania, 2001]. In this framework, there is a long-term contract market as well as a backstop spot market. Seller agents bid

their contract offers in terms of price and capacity via an electronic bulletin board, while Buyer agents decide how much to

contract with Sellers and how much to shop from the spot market. This two-tiered market has been modeled [Eur. J. Oper. Res.

(2002); D.J. Wu, P. Kleindorfer, J.E. Zhang, Integrating Contracting and Spot Procurement with Capacity Options, Working

Paper, Department of Operations and Information Management, The Wharton School, University of Pennsylvania, 2001] as a

von-Stackelberg game with Seller agents as leaders, and the necessary and sufficient conditions for the existence of market

equilibrium are given. What happens if the resulting equilibrium is noncooperative and Pareto dominated by some

nonequilibrium bidding? What happens if there are multiple equilibria, some Pareto dominated by others, then which will be

selected? What happens when there is no equilibrium? The goal of this paper is to study equilibrium and disequilibrium

behavior of artificial agents in such systems, and explore the efficient design of mechanisms to promote cooperation and

coordination of self-interested artificial agents. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A fundamental problem in business-to-business

exchanges is the efficient design of mechanisms to

promote cooperation and coordination of various self-

interested agents [35]. We study the behavior of

artificial agents in a bidding and contracting frame-

work in Refs. [40,41], hereafter cited as the WKZ

papers. In the WKZ framework, there is assumed to be

a contract market (which might be thought of as the

‘‘month ahead’’ market), in which Sellers and Buyers

interact through an electronic bulletin board, posting

bids and offers until agreement has been reached.

Capacity not committed through this contracting mar-

ket is assumed to be offered on the spot market, but

such capacity may go unused because of the risk of

not finding customers or transportation capacity at the

last minute (‘‘on the day’’). Buyers face another type

of risk for demand not contracted for in the bilateral

market, namely price volatility in the spot market.

Such price volatility can be quite severe and has caused

Buyers (for example, in the electric power market) to

pay close attention to the proper balance in their supply

0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0167 -9236 (02 )00020 -9

* Corresponding author. Tel.: +1-215-895-2121; fax: +1-215-

895-2891.

E-mail addresses: wudj@drexel.edu (D.J. Wu),

ys45@drexel.edu (Y. Sun).

www.elsevier.com/locate/dsw

Decision Support Systems 33 (2002) 335–347



portfolio between long-term contracting and spot pur-

chases. This two-tiered market has been modeled in the

WKZ papers as a von-Stackelberg game with Seller

agents as leaders.

The WKZ papers show the optimal contracting

strategies for the Buyers and the optimal bidding

and auction strategies for the Sellers. WKZ [41] also

characterize existence conditions and the structure of

market equilibrium for the associated competitive

game among sellers, under the assumption that sellers

know buyers’ demand functions. However, if these

conditions are violated, no equilibrium exists. In prac-

tical Internet auctions, the conditions as required in

the WKZ theoretical framework could well be vio-

lated (examples are given below). What happens in

such a case is precisely the focus of this paper.

Here, we are interested in using artificial agents

[15,21,24,36] to explore the (dis)equilibrium behavior

of such a dynamic bidding system. In doing so, we

model each selling artificial agent as a learning auto-

maton [24], where the learning mechanism is charac-

terized by a genetic algorithm [14]. Each buying

artificial agent is embedded with an optimal contract-

ing strategy as derived in the WKZ papers; hence,

buyer agents do not learn since they are already using

the optimal strategies given available bids on the elec-

tronic market.

The goals of this study are the following. First, we

investigate whether or not artificial agents are able to

discover equilibrium strategies when equilibrium

exists. Second, we investigate to see if the agents

can discover good and effective (e.g., cooperative)

bidding strategies when playing repeated nonlinear

games when the one-shot equilibrium is noncooper-

ative or when there does not exist any equilibrium.

Finally, we explore the emergence of trust by studying

the conditions on problems and bidding mechanisms

that induce cooperation when the above nonlinear

game is repeated over time.

The rest of the paper is organized as follows.

Section 2 provides a brief literature review. Section

3 describes our bidding models. Section 4 reports the

results of baseline computational experiments on

multi-agent bidding as well as broader experiments

varying a number of underlying parameters. Section 5

investigates nonmyopic bidding strategies (history-

dependent ‘‘if-then-else’’ rules, defined in Section 5)

and studies the emergence of cooperation in a trust

framework. Section 6 summarizes our findings and

discusses future research.

2. Literature review

Three streams of research are relevant to our work:

(1) models, analysis and human lab experiments on

the design of Internet business-to-business exchanges

for capital-intensive industries such as the electric

power sector, (2) agent-mediated electronic com-

merce, and (3) cooperation-based social trust. None

of the above three streams of work has been com-

bined, however. In this paper, we integrate these

separate streams into a prototype Decision Support

System that stems from a real world problem.

2.1. Models and analysis

The WKZ papers set up the theoretical framework

for the optimal bidding and contracting for capital-

intensive industries, which we summarize below. The

framework models the strategic interaction of long-

term contracting and spot market transactions between

Sellers and Buyers for capital-intensive goods. Sellers

and Buyers may either contract for delivery in ad-

vance (the ‘‘contracting’’ option) or they may sell and

buy some or all of their output/input in a spot market.

Contract pricing involves both a reservation fee (s) per

unit of capacity and an execution fee ( g) per unit of

output if capacity is called. The key question add-

ressed is the structure of the optimal portfolios of

contracting and spot market transactions for these

Sellers and Buyers, and the pricing thereof in market

equilibrium when such equilibrium exists. The WKZ

papers show that when Sellers properly anticipate

demands to their bids, bidding a contract execution

fee equal to variable cost (b) dominates all other bid-

ding strategies yielding the same contract output. The

optimal capacity reservation fees (s) are determined

by Sellers to trade-off the risk of underutilized capac-

ity against unit capacity costs. Buyers’ optimal port-

folios are shown to follow a merit order (or greedy)

shopping rule, under which contracts are signed

following an index, which is an increasing function

of the Seller’s reservation cost and execution cost. The

index has the following structure: s +G( g), where

G( g) =E{min[Ps,g]}. G( g) is called the ‘‘effective
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price’’ at g. It represents the expected value of the

price paid by a Buyer who has purchased a capacity

option, and reflects the fact that the Buyer will use the

option when g <Ps, the spot price, but otherwise will

use the spot market rather than exercising the option

contract. Shopping in order of the index s +G( g) says

that the Buyer at the margin evaluates which Seller to

do business with by considering the full price of a unit

of output purchased under an option. This full price is

clearly the option fee s plus the effective price at g,

G( g), when owning the option. The Buyer fills his

order book or procurement portfolio up to anticipated

willingness-to-pay for additional units of contract

output. Beyond this, the Buyer plans on purchasing

output from the spot market. This implies that the

index of the final contract signed by the Buyer always

satisfies s+G( g) <E{Ps}, the mean of the spot price.

Existence conditions and the structure of market

equilibrium are characterized in WKZ [41] for the

associated competitive game among Sellers, under the

assumption that they know Buyers’ demand functions.

If these conditions are violated, there does not exist

any equilibrium in the WKZ bidding game. In prac-

tice, nonequilibrium is a real possibility as we will see

below. What happens in disequilibrium is therefore of

considerable interest.

We investigate (dis)equilibrium behavior using ar-

tificial agents. An alternative and complementary

approach would be controlled experiments [19]. Both

approaches attempt to discover how the rules of the

game, regarding information and decision rights, af-

fect the outcome. An excellent example of the use of

controlled experiments in this regard is the work of the

Arizona School (e.g., Refs. [25,28]) investigating

electric power markets. Such markets are quite com-

plex, owing to the real-time balance requirements of

electricity, and experimental studies show the sensi-

tivity of market outcomes to very small changes in the

rules governing bidding and strategic interactions. It

should be noted, however, that none of this work has

dealt with the problem of disequilibrium behavior. One

obvious reason is that such behavior typically involves

cycling among various focal outcomes (we will see

precisely this type of cycling in the problem analyzed

below), and it would be rather expensive to track such

behavior experimentally. Thus, for the question of

interest in this paper, the use of artificial agents seems

especially appropriate.

2.2. Artificial agents

The study of artificial agents [17] and their applica-

tions in electronic commerce [e.g., DSS special issue

on agents, vol. 28, 2000] have been growing rapidly in

recent years. In that stream of work, topics pertaining to

agent-mediated electronic commerce, such as auction

bots [16,26,27,44], exchange agents [29,30], and shop-

ping and pricing agents [11,12], are relevant to the

work we report here. What distinguishes the present

work from previous work is the interest here in market

outcomes under (dis)equilibrium conditions, and this

for a market having a structure sufficiently realistic to

capture the essential characteristics of many emerging

B2B exchanges. For example, the work in Refs. [11,12]

is concerned only with the consumer side of e-Markets,

and does not base its work on any market-level (e.g.,

equilibrium) outcomes. Similarly, the work in Refs.

[16,29,30,44] is valuable for the study of general

Internet-based auctions, and associated infrastructure

or platforms, but does not model in any way the supply

side of those participating/competing in the auctions.

However, it is precisely the interaction of supply

technology and capacity conditions with buyer demand

structure that is fundamental to business-to-business

exchange outcomes. Finally, the work in Refs. [26,27]

considered bundled auctions, which are important

aspects for many consumer-oriented problems, but

are not relevant to the large majority of B2B exchanges

which are concerned with well-defined commodities,

separately priced, and typically not with bundled

goods. None of these, by the way, deals with out of

equilibrium behavior or disequilibrium behavior. By

contrast, the present paper examines a class of prob-

lems of direct relevance to B2B exchanges for capital-

intensive production, is based on a solid theoretical

structure describing rational market outcomes, and

describes and interprets both equilibrium and nonequi-

librium market behavior.

Particularly relevant to our work are the applica-

tions of agent technology to the electric power sector

such as pricing and investment [37,38], agents nego-

tiating for load balancing [4], energy management [1],

power load management [47], planning of power

transmission expansion [46], and distributed transmis-

sion cost allocation [45]. This work covers a number of

different problems in electric power, from investment

problems, to optimizing power flows and demand-side
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bidding. None of this work, however, treats the funda-

mental problems of multiple markets (contracting and

spot markets) that are the hallmark of optimal supply

management by generators/sellers in this market. This

is one of the applications to which the general frame-

work developed in WKZ [40,41], and analyzed here, is

applicable.

2.3. Social trust

The issue of social trust [32] is extremely important

in electronic communities since it is difficult to figure

out who you can trust in the electronic marketplace

[31,34]. Surprisingly, the notion of social trust has

never been agreed upon among researchers, such as

philosophers or economists [5,6,18]. This implies a

fundamental ambiguity about any computational ap-

proach to contexts involving trust [23], since such con-

texts require a legitimate model or set of conditions

under which trust may be expected to emerge from the

interactions of rational agents.

In this paper, we view trust as cooperation via

reciprocity, as in the computational economics litera-

ture (e.g., Refs. [5,9,13]). Most of this work is based

on lab experiments of human beings playing various

simple trust games [7–9,13,33], and these experiments

underscore the importance of outcome equity, trans-

parency and repetition for the emergence of trust/

cooperation. As will be shown, particularly relevant

to our work is the prisoner’s dilemma game, which is

one of the trust games that has been extensively

studied using both human agents and artificial agents

(e.g., Refs. [2,3,24]). The intellectual links between

our work and this work lie in exploring the emergence

of social trust in the form of cooperative behavior (in

a repeated game setting). Our work reported here

describes an original bidding game that arises from

our earlier theoretical framework characterizing a class

of real world applications, and focuses on both equi-

librium and nonequilibrium behavior. (The latter has

not been studied in the iterated prisoner’s dilemma

literature.) In particular, we test reciprocity as a device

for contract enforcement and for social trust building

in a distributed environment (i.e., with no central-

ization) when the resulting equilibrium is noncooper-

ative or empty. We emphasize here that we are in-

terested in the emergence of social trust/cooperation;

we are not here interested in either trusting technology

or in user acceptance of information technology

[32,39,48].

3. The bidding game

In this section, we describe our bidding game,

discuss some interesting bidding strategies, define

the normal form of the bidding game, give two

examples (one with equilibrium and the other with

out), and justify why an agent-based approach is

needed.

3.1. Preliminaries and notation

There is a single Buyer and there are N Sellers.

There are two markets, a contract market in which

Sellers can precommit capacity via capacity options to

the Buyer, and a spot market in which Sellers can sell

residual capacity (with some risk) and the Buyer can

buy additional output. Each Seller i maximizes its

expected profit Epi by bidding a contract price

xi = si+G( gi) anticipating the Buyer’s optimal con-

tracting strategy Qi(x), where the competing bids are

x = (x1, x2,. . ., xN). It has been shown in WKZ [40,41]

that the optimal contracting strategy of the Buyer,

Qi(x), follows a merit order, i.e., the Buyer shops

along a list from the lowest bid to the highest bid until

all the Buyer’s demand has been satisfied. Each Seller

has a capacity limit Ki (thus
X
i

Ki is the overall

capacity of all Sellers), a technology index that is a

function of the variable cost bi, and a capacity cost bi.
Denote c=(c1,c2,. . .,cN) and K=(K1,K2,. . .,KN). As is

standard in the economics literature, we assume there

is a linear contract demand,1 D( p)=(a� hp)+, where

y + =max{ y,0}. Following WKZ [40,41], we adopt

the following bid-tie allocation mechanism: If there is

a tie in bids among any subset of Sellers, then the

Buyer’s total demand for that subset of Sellers is

allocated to the Sellers in proportion to their respec-

tive bid capacities. (This a commonly used allocation

mechanism in practice.)

1 Note this does not imply any linear assumption of the Buyer’s

total demand. Indeed, it is kinked (i.e., nonlinear) under any spot

market price distribution, as shown in Ref. [40].
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Seller i’s problem is to maximize expected profit,

xiQiðxÞ þ ci½Ki � QiðxÞ� � ½bi þ GðbiÞ�Ki

where the first term is Seller i’s revenue from the

contract market, the second term is the revenue from

the spot market, and the third term represents cost.

This formula can be rewritten as

ðxi � ciÞQiðxÞ þ ½ci � bi � GðbiÞ�Ki ð1Þ

Notice that the second term in Eq. (1) is constant

with respect to the decision vector, x, and therefore,

Seller i’s problem can be simplified as maximize

Epi ¼ ðxi � ciÞQiðxÞ ð2Þ

3.2. Interesting bidding behaviors

We now consider some of the interesting and

useful bidding strategies that might be taken by the

Sellers.

The Monopoly Bidder (vi). This is defined as Seller

i’s bid if this seller is the only supplier in the contract

market, i.e.,

vi ¼ argmax
vi

½ðvi � ciÞDðviÞ�þ

¼ argmax
vi

½ðvi � ciÞða� hviÞ�þ ¼ ðaþ hciÞ=ð2hÞ:

The Cooperative Bidder (ui = u). This is defined as

all the Sellers forming a cartel or a team or an

oligopoly and bidding a price that maximizes the total

profit of all Sellers as a whole, i.e., ui = u is the

cooperatively determined (denoted as ‘‘c’’), uniform

price solving the following problem:

Max
u

X
i

Epi

Subject to:

The solution to the above problem is:

u ¼ aþ
X
i

ciKi=
X
i

Ki

 !
=ð1þ hÞ if u

> max maxfcig, a�
X
i

Ki

 !
=h

 !þ( )

else no cooperative solution exists.

The Opportunistic Bidder (xi). Also called the

myopic bidder (denote as ‘‘m’’) or the noncooperative

bidder. Given the other players’ bids, x� i, Seller i

bids to maximize its own profit

xi ¼ arg max
xi

Epi½xi j x�i�

where, for any vector x = (x1, x2,. . ., xN), x� i is the

vector of i-exclusive components of x, e.g., x� 1=

(x2,. . ., xN).
The Random Bidder (ri). Seller i bids randomly

(denoted as ‘‘r’’) between the lower bound and the

upper bound according to the uniform distribution,

i.e., ri =Rand(ci,max(u,vi)). Note here that given the

profit function (2), ci is the minimum feasible bid (this

is obviously the least any rational seller should bid,

otherwise the seller can make more profit per unit of

capacity by participating on the spot market rather

than on the contract market).

3.3. Normal form bidding game

We now formally define the bidding game among

the Sellers. As will be seen, these games provide a

rich platform for study of both equilibrium and non-

equilibrium behavior. The players are Sellers i,

i= 1,. . .,N. The strategy space for each Seller i is

any integer between [ci,max(u,vi)]. The Payoff func-

tion is computed via Eq. (2). Note that if there is a bid-

tie, the capacity is allocated according to the WKZ

bid-tie allocation mechanism. Note also that for this

one-shot normal form game, there will always exist at

least one mixed strategy Nash equilibrium [10]; how-

ever, there may not exist any pure strategy Nash

equilibrium. (Here, we are only interested in pure

strategy equilibria not mixed strategy equilibria.) We

have implemented a straightforward algorithm to

check whether this normal form game exists any pure

Epiz 0 for all i (individual rationality

constraint)

0VQi(u,u,u)VKi for all i (capacity constraint)
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strategy Nash equilibrium, and, if so, our algorithm

can find it.2

3.4. Numerical examples

We now give two examples that will be further

analyzed in the following sections.

Example 1. The first example corresponds to row 6,

column 4 of Table 1, which has parameter settings of

c=(10,10,18), K=(40,40,30), and the contract demand

function is D( p)= (100� p)+. The unique Nash

equilibrium for this one-shot game is the bid vector

of x=(18,18,19). However, for this very same game,

there exists a cooperative feasible bid vector, (56,

56,56) or u = 56, that is not a Nash equilibrium, yet

Pareto dominates the noncooperative Nash equilibrium

(18,18,19). It is not a Nash equilibrium since, when

facing the bid (56,56,56), Seller 3 has an incentive to

bid slightly less than the other players, say 55, in order

to contract all its capacity with the Buyer (to profit

more) rather than splitting the Buyer demand with

Sellers 1 and 2 (which would happen under the as-

sumed proportional bid-tie allocation mechanism).

This bidding game is similar to the Prisoner’s

Dilemma. The problem of interest is whether artificial

agents learn to cooperate when the game is played

repeatedly.

Example 2. The second example corresponds to row

7, column 4 of Table 1, which has the parameters of

c=(10,12,14) and K=(40,30,20), with the same

demand function as in Example 1. There does not

exist any pure strategy Nash equilibrium for the one-

shot game. Note that there is nothing odd about the

above problem parameters. This and other examples

(see Table 1 as well as additional examples in Ref.

[41]) suggest the need to understand the ‘‘rational’’

bidding behavior of agents in problems such as these

and the consequences of such bidding when there

does not exist any equilibrium.

Given the complexity of such behavior in a

repeated game setting, this seems an ideal problem

setting to study via artificial agents. This will be the

approach we pursue in what follows. We consider

only strategies based on price here (as in WKZ), but

the same approach could be used to evaluate capacity

based bid strategies (using either the Cournot equili-

brium, or the Cournot best-response functions [10], to

evaluate profits at a specific vector of capacity bids;

see Ref. [42] for some initial results).

In what follows, we first investigate two mecha-

nisms for artificial Seller agents: myopic learning

(history-independent, Section 4) and nonmyopic

learning (history-dependent ‘‘if-then-else’’ rules, Sec-

tion 5) as defined below, and finally, we briefly in-

terpret agents’ behavior in the context of social trust.

4. Myopic bidding

In myopic bidding, all Seller agents use the same

rule: the myopic rule (‘‘m’’) (e.g., Ref. [20]). Basi-

cally, what this rule or heuristic says is the following:

at the beginning of the game, randomly choose a bid

from the feasible strategy space. Then, for the next

period, choose the bid that maximizes the agent’s

payoff for his/her current time period, assuming the

other two agents stick with their previous bids.3 This

myopic rule is formally given as follows:

xið0Þ ¼ Randðci,maxðu,viÞÞ

xiðtÞ ¼ argmax
xiðtÞ

Epi½xiðtÞ j x�iðt � 1Þ� ð3Þ

Here, we assume each Seller can only remember what

happened last time, i.e., memory size is 1 (which is

standard in the agent literature), so that current strat-

egies cannot depend on previous strategies used by

other players prior to the most recent period. (We

leave the impact of memory size for a separate study;

for initial results, see Ref. [48].)

We want to study the behavior of artificial agents

when playing the dynamic game of the above exam-2 This algorithm basically computes the best-response of each

player and checks to see if there exists any outcome that constitutes

the best-responses of all players (i.e., the Nash equilibrium). If no

such outcome can be found, then there does not exist any pure

strategy Nash equilibrium, since there is at least one player who has

the incentive to deviate given other players’ bids.

3 Thus, this rule calls for players to play their ‘‘best-response’’

function strategy in the usual game-theoretic sense, as defined

above.
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ples,4 e.g., Example 1 where c=(10,10,18) and K=

(40,40,30). Under such a myopic (best-response) rule,

not surprisingly, artificial agents quickly converge to

the noncooperative equilibrium (18,18,19) predicted

by our game-theoretic type of analysis. The dynamics

of profit and agent price bidding for this simple,

benchmark setting is shown in Fig. 1.

In order to test the stability and validity of our

findings, we designed a broader experiment to test

various competing technologies and contract demand

functions. For some of these, equilibrium exists and for

some it does not. Table 1 summarizes the experimental

design and the results of a game-theoretical analysis of

the one-shot three-seller bidding game.5 When the

equilibrium exists, and given that we are using adjust-

ment processes that mimic best-response strategies, we

should not be surprised if the myopic adjustment

process converges always to the noncooperative equi-

librium, indeed, this behavior can be explained by the

‘‘backward induction’’ argument in game theory [10].

When there does not exist any equilibrium, the agents

present the expected oscillating behavior (i.e., myopic

bidding agents cannot discover an equilibrium in repea-

ted bidding). These are, in fact, what occur, as shown in

Table 2, which reports the results using myopic bid-

ding, where the entry ‘‘no equilibrium’’ means no

convergence occurs for the indicated bidding game.

A point implicit in Table 2 is that the cooperative

outcome (which is different for each cell in this design)

did not emerge in any of the test cases. The reason is

that the myopic rule used provides incentives for

agents to undercut their fellow sellers in order to gain

a higher market share and profit through a slight price

reduction. The result is that cycling is observed as the

artificial agents engage in a ‘‘price war’’ (no cooper-

ation), as plotted in Fig. 2.

Artificial agents engage in ‘‘dog-fighting’’ strat-

egies that take advantage of other players’ previous

bids, but they never manage to exit from their cycling

behavior, and long-term profits are therefore not

maximized. None of this is very surprising given the

structure of the myopic strategies assumed. However,

what is interesting is that using myopic bidding,

where there exist multiple Nash equilibria, the agents

are able to select the Nash equilibrium that Pareto

dominates the others. This is true for all cases with

multiple Nash equilibria in our experimental design,

as shown in row 2, columns 2, 3 and 4 of Table 2.

5. Nonmyopic bidding

Since myopic bidding does not lead to cooperation,

we now investigate whether nonmyopic (or history-

dependent) price bidding will do better. If so, we are

Fig. 1. Dynamic bidding for Example 1: profit and price over time

for c=(10,10,18), K=(40,40,30).

5 Basically, the table shows a two-factor statistical design to

cover various cases of the parameter settings, and the results of the

game-theoretical analysis are obtained using the algorithm described

in footnote 2.

4 In myopic bidding, GA is used to search for the optimal bid

by solving Eq. (3). For the simple profit function (2), other search

techniques have been used to benchmark with GA (not surprisingly,

both found the optimal solutions in these cases). Of course, GA

could be used for considerably more complex profit functions than

those illustrated here, including profits that are the result of en-

terprise simulation models, which would preclude the use of many

analytic techniques. In any case, the focus in this first example is on

system dynamics, rather than on comparing various optimization

methods.
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interested in finding out the conditions under which

cooperation and long-run profit maximization occur.

5.1. Rule definitions

The agent strategies used are a population of ‘‘if-

then-else’’ rules or ‘‘condition/action’’ pairs that maps

the history (previous time period t� 1) of other play-

ers’ bidding behavior to the agent’s current action (for

time period t). Each rule specifies an action (how much

to bid for the current time period) to be taken if the

condition is satisfied. The rules are coded in the

following way.6 Assume each agent can take an action

by either bid randomly (‘‘r’’), cooperatively (‘‘c’’) or

myopically (‘‘m’’) as defined previously. Assume each

agent has a memory size of 1. Thus, a nine-bit string

completely specifies the action of an agent, with each

bit can take three possible values from {r,c,m}. In

particular, the string has the structure of ‘‘rr, rc, rm, cr,

cc, cm, mr, mc, mm’’, with each bit corresponding to

one of the nine possible scenarios from the previous

time period. For example, the sixth bit ‘‘cm’’ corres-

ponds to the situation when Seller j bids cooperatively

(‘‘c’’) and Seller k bids myopically (‘‘m’’) during the

previous time period (t� 1). The value in this bit

specifies the action the agent (Seller i) will take in

the current time period (t).7 Examples of rules using

this coding strategy are given below. Each agent-rule

(three-value string) in each generation plays a round-

6 This simple rule coding strategy is standard in the genetic

algorithms literature when programming agents to play games.

Table 1

Theoretical analysis of the one-shot three-seller bidding game

D=(77� p)+ D=(115� p)+ D=(100� p)+

ci=(13,13,13),

Ki=(30,30,30)

(16,16,16),

(15,15,15),

(14,14,14)

(30,30,30),

(29,29,29)

(21,21,21),

(20,20,20)

ci=(11,21,21),

Ki=(44,23,23)

(21,22,22) no equilibrium (23,24,24)

ci=(16,16,25),

Ki=(34,34,22)

no equilibrium (31,31,31) no equilibrium

ci=(7,12,17),

Ki=(45,26,19)

no equilibrium no equilibrium no equilibrium

ci=(10,10,18),

Ki=(40,40,30)

no equilibrium no equilibrium (18,18,19)

ci=(10,12,14),

Ki=(40,30,20)

no equilibrium no equilibrium no equilibrium

Table 2

Agents’ repeated myopic bidding results. In agent repeated bidding,

no cooperation emerged in any of the test cases

D=(77� p)+ D=(115� p)+ D=(100� p)+

ci=(13,13,13),

Ki=(30,30,30)

(16,16,16) (30,30,30) (21,21,21)

ci=(11,21,21),

Ki=(44,23,23)

(21,22,22) no equilibrium (23,24,24)

ci=(16,16,25),

Ki=(34,34,22)

no equilibrium (31,31,31) no equilibrium

ci=(7,12,17),

Ki=(45,26,19)

no equilibrium no equilibrium no equilibrium

ci=(10,10,18),

Ki=(40,40,30)

no equilibrium no equilibrium (18,18,19)

ci=(10,12,14),

Ki=(40,30,20)

no equilibrium no equilibrium no equilibrium

Fig. 2. Dynamic bidding for Example 2: profit and price over time

for c=(10,12,14), K=(40,30,20).

7 Therefore, the total rule search space for Seller i would be 39

for this particular example. The search space would grow

exponentially as the size of the memory increases, for example,

when the memory size is 2, then the rule space would be 381 using

the above coding strategy. It is straightforward to transfer this rule

representation to computer implementations such as in binary

coding or in gray-coding, obviously the size of the rule space

depends on specific computer implementation. We focus on the

insights discovered by artificial agents, but not on comparing

efficiency of various coding strategies.
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robin tournament against each and every other agent-

rule with a prespecified population size, say, 70. This

means that each rule for each agent has to play against

70� 70 = 4900 combinations of rules of the other two

agents, with fitness of the rule for this agent being the

total profits achieved over the 4900 games played in

this tournament. Standard genetic algorithm operators

are used to evolve rules between generations. Each

bidding game is repeated 100 times. We are partic-

ularly interested in the performance of the following

rules. These rules are random (R), cooperative (C),

noncooperative (N), and adaptive-learning (L), which

are formally defined as the following. Note that the

string in quotes, e.g., ‘‘r, r, r, r, r, r, r, r, r’’, is the GA

rule representation using the above-described coding

strategy. For any Seller i, given the bids of others

(Seller j and Seller k):

Random rule: R = ‘‘r, r, r, r, r, r, r, r, r’’. xi(t) = Rand

(ci,max(u,vi)) (uniformly bid an integer number from

the feasible strategy space no matter what the others

bid);

Cooperative rule: C = ‘‘c, c, c, c, c, c, c, c, c’’.

xi(t) = ui = u (always bid the cooperative price ui = u,

no matter what the others bid. This is also known as

the ‘‘Nice’’ rule);

Opportunistic rule: O = ‘‘m, m, m, m, m, m, m, m,

m’’. xiðtÞ ¼ argmaxxiðtÞEpi½xiðtÞ j x�iðt � 1Þ� (no mat-

ter what the others bid, always bid the best-response

strategy that maximizes own profit, assuming the

other players stick with their last bids; in the first

period, assume other players will bid cooperatively,

i.e., x� i(0) = u; sometimes this strategy is also called

the ‘‘Nasty’’ rule);

Adaptive-learning rule: L= ‘‘m, m, m, m, c, m, m,

m, m’’. xi(1) = ui= u; if xj(t� 1) = u and xk(t� 1) = u,

then xi(t) = u else xiðtÞ¼argmax
xiðtÞ

Epi½xiðtÞ j x�iðt � 1Þ�
(bid cooperatively initially; if both the other players

bid cooperatively at the last time period, then cooper-

ate; otherwise, bid best-response assuming the other

players stick to their last period’s bids).

We now report experimental results using non-

myopic bidding.

5.2. Experimental results

5.2.1. One agent learning

We now introduce one learning agent, Seller 1, into

the game, while the other two agents are using fixed

rules from the set of {R,C,O}. Thus, the learning arti-

ficial agent could use the adaptive-learning rule (L) as

well as the other three strategies ‘‘R’’, ‘‘C’’, and ‘‘O’’.

Again these rules are functions of other players’

previous bids (one-period memory or history-depend-

ent strategies). The winning rule the GA agent learns

is ‘‘L’’ and it is a more sophisticated version of a Tit-

for-Tat strategy. Recall the ‘‘L’’ rule says that ‘‘if the

others cooperated, then cooperate; otherwise, defect

and choose a best-response given what they chose in

the previous period’’. This is very easy for the agent to

use and it clearly has some characteristics of Tit-for-

Tat. However, it is not exactly Tit-for-Tat, as Tit-for-

Tat simply mimics other players’ strategies, which is

not easy for the agent to use in the multi-agent setting

since there are multiple opponents here. Whose bids

should the agent mimic? For this reason, we labeled

‘‘L’’ as the ‘‘adaptive-learning rule’’.

The experiment shows that the following strategy

vector, (L,O,O), exhibits the Nash property, i.e., given

the rules used by other players, no player has any

incentive to switch to other rules. The result shows

that only one agent learning does not lead to cooper-

ation. As in all test cases, the result remains the same

as when all players are using myopic bidding (as

summarized in Table 2), although the learning agent

was able to discover the best-response rule (‘‘L’’)

corresponding to other players’ fixed rules (‘‘O’’).

5.2.2. All agents learning

We now want to study what happens if all three

agents (not just one of them) are intelligent, i.e., all

three agents can use history-dependent rules such as

‘‘R’’, ‘‘C’’, ‘‘O’’, and ‘‘L’’. The winning rule used by

each agent is ‘‘L’’, and the vector (L,L,L) exhibits the

Nash property. Co-evolving artificial agents are head-

ing to a Pareto efficient cooperative outcome, (u,u,u),

for all test cases, as summarized in Table 3. This

should not be surprising. If all agents bid u initially,

then the above rules guarantee that all agents will

continue to bid u in the future! What is interesting is

that even if some of the agents defect at times, the

dynamics show that learning agents learn to cooperate

over time. The results in Table 3 are interesting since

the folk theorem [10] in game theory predicts that any

outcome in the feasible domain can be reached if the

one-shot game is played in an infinite time horizon

(there are quite a many of them, and the cooperative
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outcome discovered by artificial agents is one of

them). Our results show that learning artificial agents

can achieve the Pareto efficient cooperative outcome

in a finite time horizon (in the experiment, 100 pe-

riods), suggesting a promising alternative to explain

the behavior of real agents (human beings) when

playing this and other repeated games.

5.3. The emergence of trust

We now further investigate the behavior of a learn-

ing artificial agent in the framework of social trust in

order to explore conditions that induce cooperation. To

this end, we study the impact of the ‘‘climate’’ on this

agent’s behavior. Here, we define climate as the per-

centage of adaptive-learning strategies (the ‘‘L’’ rule)

used by the other players (excluding the agent itself).

We test the behavior of the intelligent agent, say, Seller

1, by allying Seller 2 and Seller 3 in the sense that they

Table 3

With all three agents learning, nonmyopic biddings lead to

cooperation, (x1,x2,x3)= (u,u,u)

D=(77�p)+ D=(115�p)+ D=(100�p)+

ci=(13,13,13), Ki=(30,30,30) (45,45,45) (64,64,64) (56,56,56)

ci=(11,21,21), Ki=(44,23,23) (46,46,46) (65,65,65) (58,58,58)

ci=(16,16,25), Ki=(34,34,22) (47,47,47) (66,66,66) (59,59,59)

ci=(7,12,17), Ki=(45,26,19) (43,43,43) (62,62,62) (55,55,55)

ci=(10,10,18), Ki=(40,40,30) (44,44,44) (63,63,63) (56,56,56)

ci=(10,12,14), Ki=(40,30,20) (44,44,44) (63,63,63) (55,55,55)

Fig. 3. The emergence of trust: artificial agent Seller 1 learns best rules to use for various climates using Example 1 parameters where

c=(10,10,18), K=(40,40,30). When the trustworthiness in the community is low (i.e., when less than 50% of the strategies used by other sellers

are adaptive learning rule L), Seller 1 learns to exploit this by using the opportunistic rule; when the trustworthiness is high (i.e., when over 50%

of the strategies used by others are adaptive learning rule L), Seller 1 learns to cooperate by switching to the adaptive learning rule. As the

degree of trustworthiness increases, it is much better off for an intelligent seller to trust the other players by cooperating (either use the adaptive

learning rule L or the cooperative rule C). Similar results have been achieved when using other technological parameters, e.g., Example 2

parameters where c =(10,12,14), K=(40,30,20), or when other sellers are learning artificial agents.
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will use identical strategies, fixed over time and drawn

from the set {R,C,O,L}, with the same percentage of

rule ‘‘L’’, ranging from 0%, 25%, 50%, 75%, to 100%,

with the remaining strategies equally split among

{R,C,O}. Seller 1’s behavior and profits over 100 time

periods in different environments is shown in Fig. 3.,

using parameter settings as in Example 1. Intuitively,

the behavior of the artificial intelligent agent suggests

the following: When the trustworthiness in the com-

munity is low (i.e., when less than 50% of the rules

used by other sellers are ‘‘L’’), use the opportunistic

rule ‘‘O’’ to exploit this; when the trustworthiness is

high (i.e., when over 50% of the rules used by others

are ‘‘L’’), use rule ‘‘L’’ to cooperate. Shown also in Fig.

3 is that as the degree of trustworthiness increases, it is

much better for an intelligent player to trust the other

players by cooperating (either use rule ‘‘L’’ or ‘‘C’’), as

the player’s profit keeps increasing if using these two

cooperative rules suggesting that ‘‘trust pays’’.

Similar results have been achieved when using other

technological parameters listed in Table 1 (e.g., Exam-

ple 2), or when other Sellers are learning artificial

agents, e.g., switch the role of Seller 3 with Seller 1,

and let Seller 1 and Seller 2 ally with each other,

suggesting these results are fairly general. The behav-

ior of the intelligent agent exhibits some degree of

‘‘identity’’, rather than merely having a set of ‘‘do or

die’’ strategies. This is interesting and sheds lights on

designing ‘‘identity-centric’’ versus ‘‘strategy-centric’’

artificial agents. The former, ‘‘identity-centric’’ artifi-

cial agents are of significant importance in strategic

contexts [21].

6. Conclusions and future research

We now briefly summarize the findings of the

various experiments conducted. First, and most impor-

tant, we find that artificial agents are viable in an

automated marketplace: in the repeated bidding game,

they can discover the noncooperative equilibrium if it

exists; in cases where there are multiple equilibria (in

the one-shot game), the agents discover the Pareto

efficient equilibrium; further, they discover the coope-

rative outcome that Pareto dominated the noncooper-

ative equilibrium. Second, full cooperation is achieved

in repeated bidding even when the one-shot equili-

brium does not exist. This demonstrates that learning

adaptive artificial agents are capable of finding coop-

erative strategies in a complex dynamic environment.

Third, agent learning plays a significant role in induc-

ing agent cooperation. Under myopic bidding, no

cooperation results. However, under nonmyopic bid-

ding, the resulting outcomes entail full cooperation and

exhibit the Nash property. Finally, we find some

preliminary conditions for the emergence of trust: (a)

nonmyopic bidding can lead to cooperation; (b) strat-

egies like Tit-for-Tat can induce cooperation; (c)

climate has an impact on learning agents’ behavior.

For example, a ‘‘friendly’’ climate (when the majority

are playing nicely using rule ‘‘C’’) does not ensure

cooperation, as noted above. In fact, some agents tend

to be ‘‘opportunistic’’ when the majority of the group

is ‘‘nice’’. This, in turn, disrupts the cooperative

behavior or trustworthiness of the whole community.

While these results are consistent with findings in

the iterated prisoner’s dilemma literature where the

equilibrium exists, we believe they open the door to

defining computational principles of trust in strategic

situations where the equilibrium might or might not

exist. Along the same line, using a different learning

regime (Q-learning), Kimbrough, Wu and Zhong [22,

39,48] explore coordination and cooperation among

‘‘identity-centric’’ artificial agents in other types of

trust games, ultimatum games, and supply chain

games. In the long term, we hope a general theory

of trust will emerge for both equilibrium and non-

equilibrium settings that can be computationally repli-

cated by artificial agents. Such a theory would then

have some credible justification for broader use in

the application of artificial agents to support efficient

e-Business activities.
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