The B2Scala Tool: integrating Bach in Scala
with Security in Mind

+1[0009—0007—0213—0748
Doha Ouardi®! i
Manel Barkallah?![0000—0003—-2608—5658] 4y
Jean-Marie Jacquet![0000-0001-9531-0519]

Nadi Research Institute, Faculty of Computer Science, University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium
{doha.ouardi,manel.barkallah, jean-marie.jacquet}@unamur.be

Abstract. Although many research efforts have been spent on the the-
ory and implementation of data-based coordination languages, not much
effort has been devoted to constructing programming environments to
analyze and reason on programs written in these languages. This paper
proposes an incarnation in Scala of a Linda-like language, called Bach,
developed by the authors. It consists of a Domain Specific Language,
internal to Scala, that allows to experiment programs developed in Bach
while benefiting from the Scala eco-system, in particular from its type
system as well as program fragments developed in Scala. Moreover, we
introduce a Hennessy-Milner like logic that allows to restrict the exe-
cutions of programs to those meeting these logic formulae. Our work is
illustrated on the Needham-Schroeder security protocol, for which we
manage to rediscover the man-in-the-middle attack first put in evidence
by G. Lowe.

Keywords: Coordination - Bach - Scala - Hennessy-Milner Logic - se-
curity protocols.

1 Introduction

In the aim of building interactive distributed systems, a clear separation between
the interactional and the computational aspects of software components has been
advocated by Gelernter and Carriero in [7]. Their claim has been supported by
the design of a model, Linda [2], originally presented as a set of inter-agent
communication primitives which may be added to almost any programming lan-
guage. Besides process creation, this set includes primitives for adding, deleting,
and testing the presence/absence of data in a shared dataspace.

A number of other models, now referred to as coordination models, have been
proposed afterwards. As reported in [4], many of them have been implemented,
in some cases as stand alone languages, like Tucson [5], but mostly as API’s of
conventional languages, accessing tuple spaces through dedicated functions or
methods, as in pSpaces [14]. The first approach has the advantage of offering
support for a complete algebra-like incarnation of Linda but to the expense of

2 D. Ouardi et al.

having to re-implement classical programming constructs that are proposed in
conventional languages (like variables, loops, lists, ...). The second approach
benefits from the converse characteristics: it is easy to access to classical pro-
gramming constructs but the abstract control flow that is offered at a process
algebraic level, like non-deterministic choice and parallel composition, is to be
coded in an ad hoc manner. We turn in this paper to a third approach which
enjoys the benefits of the two approaches. It consists in using a domain specific
language incarnated inside an existing language. More specifically this paper
proposes to embody the Bach coordination language, developed by the authors,
inside Scala. In doing so we will take profit of the Scala eco-system while bene-
fiting from all the abstractions offered by the Bach coordination language. A key
feature is that we will interpret control flow structures, which we put in good use
to restrict computations to those verifying logic formulae. The analysis of the
Needham-Schroeder security protocol [17] is used to illustrate our work. Among
others, we shall use our coding to highlight the man-in-the-middle attack to it,
first put in evidence by G. Lowe [15].

This work is a continuation of previous work on the Scan and Anemone
workbenches [9, 10]. It differs by the fact that both Scan and Anemone interpret
directly Bach programs. Moreover the PLTL logic they use is different from the
logic proposed in this paper.

Our work is also closely linked to the work on Caos [20], which provides a
generic tool to implement structured operational semantics and generates intu-
itive and interactive websites. In particular, one can easily generate a webpage
which allows the user to introduce programs in an input text box and to ana-
lyze/animate its execution through a collection of widgets. As in our work, this
tool is implemented in Scala. However it offers a generic framework which has
to be instantiated by defining in Scala the semantics of the language under con-
sideration. In contrast, we take an opposite approach which already offers an
implementation of the Bach constructs and in which programmers need to code
Bach-like programs in a Scala manner.

The rest of the paper is structured as follows. Section 2 presents the Needham-
Schroeder use-case as well as the Bach and Scala languages. Section 3 describes
the B2Scala tool, both from the point of view of its usage by programmers and
from the implementation point of view. An Hennessy-Milner like logic is pro-
posed in Section 4 together with its effect on reducing executions. Section 5
illustrates how B2Scala coupled to constraint executions can be used to analyze
the Needham-Schroeder protocol. Finally Section 6 draws our conclusions and
compares our work with related work.

2 Background

2.1 Use-case : the Needham-Schroeder Protocol

The Needham-Schroeder protocol, developed by Roger Needham and Michael
Schroeder in 1978 [17], is a pioneering cryptographic solution aimed at ensur-
ing secure authentication and key distribution within network environments. Its

The B2Scala Tool 3

primary objective is to establish a shared session key between two parties, typi-
cally referred to as the principal entities, facilitating encrypted communication
to safeguard data confidentiality and integrity. The protocol unfolds in a series of
steps: initialization, where a client (A) requests access to another client (B) from
a trusted server (S), followed by the server’s response, which involves authentica-
tion, session key generation, and ticket encryption. Subsequently, communication
with party B ensues, facilitated by the transmission of the encrypted ticket, along
with nonces to ensure freshness. Parties exchange messages encrypted with the
session key and incorporate nonces to prevent replay attacks. Mutual authen-
tication is achieved through encrypted messages exchanged between A and B,
leveraging the established session key and nonces. Despite its early contributions,
the original protocol exhibited vulnerabilities, notably the reflection attack. In
response, refined versions have emerged, such as the Needham-Schroeder-Lowe
[16] and Otway-Rees protocols [13].

The description of the Needham-Schroeder public key protocol is often slimmed
down to the three following actions:

Alice — Bob : message(na : a)pkp
Bob — Alice : message(na : nb)pkq
Alice — Bob : message(nb) kb

where each transition of the form X — Y : m represents message m being sent
from X to Y. Moreover, the notation my represents message m being encrypted
with key public key k.

This version assumes that the public keys of Alice and Bob (resp. pka and
pkb) are already known to each other. The full version also involves communi-
cation between the parties and a trusted server to obtain the public keys.

In this model, Alice initiates the protocol by sending to Bob her nonce na
together with her identity a, the whole message being encrypted with Bob’s
public key pkb. Bob responds by sending to Alice her nonce na together with
his nonce nb, the whole message being encrypted this time with Alice’s public
key pka. Finally Alice sends to Bob his nonce nb, as a proof that a session has
been safely made between them. The message is this time encrypted with Bob’s
public key.

It is worth stressing that, although public keys are know publicly (as the
noun suggests), it is only the owners of the corresponding private keys that can
decrypt encrypted messages. For instance, the first message sent to Bob can only
be decrypted by him.

It is also worth noting that, although sending messages appears as an atomic
action in the above description, this is in fact not the case. Messages are transmit-
ted through some medium, let say to simplify the network, and thus are subject
to be read or picked up by opponents. This will be illustrated in Section 5 where
a more detailed model will be examined.

4 D. Ouardi et al.

(T) (tell@) | o) — (B | U {t}) (G) (get(®) | oU{t}) — (E|o)

tg o
(nask(t) |oc) — (E|o)

(A) (ask(®) |oU{t}) — (E|oU{t}) (N)

Fig. 1. Transition rules for the primitives

2.2 The Bach Coordination Language

Definition of data. Following Linda, the Bach language [6, 11] uses four prim-
itives for manipulating pieces of information : tell to put a piece of information
on a shared space, ask to check its presence, nask to check its absence and get
to check its presence and remove one occurrence. In its simplest version, named
BachT, pieces of information consist of atomic tokens and the shared space,
called the store, amounts to a multiset of tokens. Although in principle sufficient
to code many applications, this is however too elementary in practice to code
them easily. To that end, more structured pieces of information are introduced
as expressions of the form f(a,---,a,) where f is a functor and ay, ..., a,
are structured pieces of information. Note that, as usual, tokens are viewed as
structured pieces of information having no arguments and are written without
parentheses.

Ezxample 1. The nounces used by Alice and Bob in the Needham-Schroeder pro-
tocol are coded by the tokens na and nb, respectively. Similarly, their public
keys are coded by the tokens pka and pkb. A message encrypted by Alice with
Bob’s public key and providing Alice’s nounce with her identity is encoded as
the following structured piece of information encrypt(na, alice, pkb).

The set of structured pieces of information is subsequently denoted by Z. For
short, si-term is used later to denote a structured piece of information.

Agents. The primitives in Bach consist of the tell, ask, nask and get primi-
tives already introduced, which take as arguments elements of Z. Their execution
is formalized by the transition steps of Figure 1. Configurations are taken there
as pairs of instructions, for the moment reduced to simple primitives, coupled
to the contents of the share space. Following the constraint-like setting in which
we have rephrased Linda primitives, the shared space is renamed as store and is
formally defined as a multiset of si-terms. As a result, rule (T) states that the
execution of the tell(t) primitive amounts to enriching the store by an occur-
rence of t. The E symbol is used in this rule as well as in other rules to denote
a terminated computation. Similarly, rules (A) and (G) respectively state that
the ask(t) and get(t) primitives check whether ¢ is present on the store with the
latter removing one occurrence. Dually, as expressed in rule (N), the primitive
nask(t) tests whether ¢ is absent from the store.

The B2Scala Tool 5

) (A]0) — (A" | o) (A]0) — (A" | o)
A Blo) — (A5 B} (© TA+Blo) (A]a)
, (B + Alo) — (4| o)
(A] o) — ("] o)
(P) TATB o) — (A 1B o) (Pey D@ =A(AlF/T] 0) — (4| o)
(BllAlo)— (Bl A"| o) Pa) [o) — (A1)

Fig. 2. Transition rules for the operators

Primitives can be composed to form more complex agents by using traditional
composition operators from concurrency theory: sequential composition, parallel
composition and non-deterministic choice. They are respectively denoted by the
iy || and + symbols.

Procedures are defined through the proc keyword by associating an agent
with a procedure name. As in classical concurrency theory, we assume that the
defining agents are guarded, in the sense that any call to a procedure is preceded
by the execution of a primitive or can be rewritten in such a form.

Example 2. As an example, the behavior of Alice and Bob can be coded as
follows:

proc Alice = tell (encrypt(na,a,pkb)); get(encrypt(na,nb,pka));
tell (encrypt (nb,pkb)).

Bob get (encrypt (na,a,pkb); tell (encrypt(na,nb,pka));

get (encrypt (nb,pkb)).

Note that Alice and Bob only tell messages encrypted with the public key of the
other and only get messages encrypted with their public key, which simulates
their sole use of their private key.

The operational semantics of complex agents is respectively defined through
the transition rules of Figure 2. They are quite classical. Rules (S), (P) and
(C) provide the usual semantics for sequential, parallel and choice compositions.
Rule (Pc) makes procedure call P(@) behave as the agent A defining procedure
P with the formal arguments T replaced by the actual ones wu.

In these rules, it is worth noting that we assume agents of the form (F; A),
(E|| A) and (A || E) to be rewritten as A.

2.3 The Scala Programming Language

Scala is a statically typed language known for its concise syntax and seamless
fusion of object-oriented and functional programming. It stands as a potent tool
for a variety of applications [18]. Its static typing ensures code safety, while
features like type inference and expressive constructs contribute to readability.
Scala’s support for functional programming, immutability, and pattern matching
renders it apt for scalable applications.

In Scala, variables can be declared as immutable or mutable, as illustrated
by the following code snippet.

6 D. Ouardi et al.

val immutableVariable: Int = 42

var mutableVariable: String = ”Hello, Scalal!”

Methods are introduced with the def keyword, can be generic (with type
parameters specified in square brackets), can be written in curried form (with
multiple parameter lists) and have a return type which is specified at the end of
the signature. Here is a simple example with the add method.

def add(x: Int, y: Int): Int =x + y

Methods are typically included in the definition of objects, classes and traits,
which act as interfaces in Java. Of particular interest for the implementation
of B2Scala is the definition of case classes which are classes that automatically
define setter, getter, hash and equal methods.

Two main additional features of Scala are worth stressing.

Functions and objects. Functions may be coded by defining objects with an
apply function. For instance, if we define

object tell {
def apply(siterm: SI_Term) = TellAgent (siterm)
}

object Agent {
def apply(agent: BSC_Agent) = CalledAgent (agent)
}

then the evaluation of
val P = Agent { tell(f(1,2)) }

consists first in evaluating tell on the si-term f(1,2), which results in the struc-
ture Tell Agent(f(1,2)), and then in evaluating the function Agent on this value,
which results in the structure Called Agent(Tell Agent(f(1,2))). It is that result
which is assigned to P.

Strictness and lazyness. Scala is a strict language that eagerly evaluates
expressions. However there are cases in which it is desirable to postpone the
evaluation of expressions, for instance to handle recursive definitions of agents.
To that end, Scala proposes two basic mechanisms: call-by-name of arguments of
functions and so-called thunks. To understand these two concepts, let us consider
the following function:

def doubleFirst(x: Int, y: Int) = x + x

It returns the double of its first argument, regardless of the value of the second
one (which is not used). Suppose we want to evaluate double F'irst(3+4, 10+ 20).
Using an eager strategy, Scala evaluates the two arguments and then computes
the double of the first one. As a result 10 4 20 is computed although the result
is not used.

Let us slightly modify the definition of the double First function, as follows:

The B2Scala Tool 7

def doubleFirstLazy (x: Int, y: = Int) = x + x

The first argument is passed using the call-by-value strategy. As for the
double First function, it is evaluated whenever the function is called. In contrast,
the second argument is passed using the call-by-name strategy. Accordingly, it
is evaluated when needed and thus in our example not evaluated at all. Such a
strategy is particularly useful to code if-then-else expressions for which one part
only is evaluated according to the evaluation of the condition:

def myIf[A](cond: Boolean, onTrue: => A, onFalse: => A): A = {
if (cond) onTrue else onFalse

}

For instance, using the following definition of myDiv, the evaluation of myDiv(0)
leads only to evaluate 1.

def myDiv(x: Float): Float = {
(myIf[Float](x != 0, 1/x, 1))(x) }

However one step further needs to be made to handle recursive expressions
that we want to evaluate step by step. In that case, so-called thunks are used.
They amount to consider functions requiring no arguments, as in the following
definition

def mylIf[A](cond: Boolean, onTrue: () => A,
onFalse: () = A): A= {
if (cond) onTrue() else onFalse()

}

Note that the arguments onTrue and onF'alse are now functions taking no argu-
ments and leading to expressions rather than simply expressions. Note also that
according to the syntax of Scala onTrue() can also be rewritten as onTrue apply.

To conclude this point, it is possible to delay the evaluation of val-declared
expression by using the lazy keyword, such as in

lazy val recursiveExpression = ... recursiveExpression

3 The B2Scala Tool

3.1 Programming interface

To embody Bach in Scala, two main issues must be tackled: on the one hand,
how is data declared, and, on the other hand, how are agents declared.

Data. As regards data, the trait SI_Term is defined to capture si-terms. Con-
crete si-terms are then defined as case classes of this trait. For instance in order
to manipulate f(1,2) in one of the primitives (tell, ask, ...) the following dec-
laration has to be made:

case class f(x:Int, y: Int) extends SI_.Term

8 D. Ouardi et al.

Similarly, tokens can be declared as in
case class a() extends SI_Term

However that leads to duplicate parentheses everywhere as in tell(a()). To avoid
that a Token class has been defined as a case class of ST Term. It takes as
argument a string so that token a can be declared as

val a = Token(‘‘a’’)
Accordingly, @ may now be used without parentheses, as in tell(a).

Example 3. As examples, the public keys and nonces used in the Needham-
Schroeder protocol are declared as the following tokens:

val pka = Token(‘‘pka’’)

val pkb = Token(‘‘pkb’’)

val na = Token(‘‘na’’)

val nb = Token(‘‘nb’’)

Encrypted messages are coded by the following si-terms:

case class encrypt2(n: SI_Term,k: SI_-Term) extends SI_Term
case class encrypt3(n: SI_-Term,x: SI_Term,k: SI_.-Term) extends SI_Term

Note that Scala does not allow to use the same name for different case classes.
We have thus renamed them according to the number of arguments.

Agents. The main idea for programming agents is to employ constructs of the
form

val P = Agent { (tell(f(1,2))+tell(g(3))) || (tell(a)+tell(b)) }

which encapsulate a Bach agent inside Scala definitions. The Agent object is the
main ingredient to do so. It is defined as an object with an apply method as
follows

object Agent {
def apply (agent: BSC_Agent) = CalledAgent (() => agent)
}

It thus consists of a function mapping a BSC_Agent into the Scala structure
CalledAgent taking a thunk, which consists of a function taking no argument
and returning an agent. As we saw above, this is needed to treat in a lazy way
recursively defined agent.

The BS_Agent type is in fact a trait equipped with the methods needed to
parse Bach composed agents. Technically it is defined as follows:

trait BSC_Agent { this: BSC_Agent =>
def *(other: => BSC_Agent) =
ConcatenationAgent(() => this, other _)
def ||(other: => BSC_Agent) =
ParallelAgent (() => this, other _)
def +(other: => BSC_Agent) =
ChoiceAgent(() => this, other _)

The B2Scala Tool 9

As ; is a reserved symbol in Scala, sequential composition is rewritten with the
* symbol.

The definition of the composition symbol x, || and + employs Scala facility to
postfix operations. Using the above definitions, a construct of the form tell(t) +
tell(u) is interpreted as the call of method + to tell(t) with argument tell(u).

It is worth observing that the composition operators take agent arguments
with call-by-name and deliver structures using thunks, namely functions without
arguments to agents.

It will be useful later to generalize choices such that they offer more than
two alternatives according to an index ranging over a set, such asin ___; ag(x)
where ag(x) is an agent parameterized by x. This is obtained in B2Scala by the
following construct

GSum(L)(x => ag(x))

where L is a list.

3.2 Implementation of the Domain Specific Language

The implementation of the domain specific language is based on the same ingre-
dients as those employed in the Scan and Anemone workbenches [9,10]. They
address two main concerns: how is the store implemented and how are agents
interpreted.

The store. The store is implemented as a mutable map in Scala. Initially empty,
it is enriched for each told structured piece of information by an association of
it to a number representing the number of its occurrences on the store. The im-
plementation of the primitives follows directly from this intuition. For instance,
the execution of a tell primitive, say tell(t), consists in checking whether t is
already in the map. If it is then the number of occurrences associated with it
is simply incremented by one. Otherwise a new association (t,1) is added to
the map. Dually, the execution of get(t) consists in checking whether t is in
the map and, in this case, in decrementing by one the number of occurrences.
In case one of these two conditions is not met then the get primitive cannot be
executed.

Interpretation of agents. Agents are interpreted by repeatedly executing
transition steps. This boils down to the definition of function run_one, which
assumes given an agent in an internal form and which returns a pair composed of
a boolean and an agent in internal form. The boolean aims at specifying whether
a transition step has taken place. In this case, the associated agent consists of
the agent obtained by the transition step. Otherwise, failure is reported with the
given agent as associated agent.

The function is defined inductively on the structure of its argument, say ag.
If ag is a primitive, then the run_one function simply consists in executing the
primitive on the store. If ag is a sequentially composed agent ag; ; ag;;, then the

10 D. Ouardi et al.

transition step proceeds by trying to execute the first subagent ag;. Assume this
succeeds and delivers ag’ as resulting agent. Then the agent returned is ag’ ; agy;
in case ag’ is not empty or more simply ag;; in case ag’ is empty. Of course, the
whole computation fails in case ag; cannot perform a transition step, namely in
case run_one applied to ag; fails.

The case of an agent composed by a parallel or choice operator is more subtle.
Indeed for both cases one should not always favor the first or second subagent. To
avoid that behavior, we use a boolean variable, randomly assigned to 0 or 1, and
depending upon this value we start by evaluating the first or second subagent.
In case of failure, we then evaluate the other one and if both fails we report a
failure. In case of success for the parallel composition we determine the resulting
agent in a similar way to what we did for the sequentially composed agent. For
a composition by the choice operator the tried alternative is simply selected.

The computation of a procedure call is performed similarly as one may ex-
pect.

4 Constrained executions

The fact that Bach agents are interpreted in the B2Scala tool opens the door
to select computations of interest. This is obtained by stating logic formulae to
be met. The logic we use is inspired by the Hennessy-Milner logic [8] and the
p~calculus [12]. In view of the coordination context, it rests on basic formulae
that assert the presence of si-terms, and, by negation, their absence. For instance
bf (i_running(Alice,Bob)) states that Alice and Bob have initiated a session.
Such formulae may be combined with the classical and, or and negation opera-
tors. Let us call them bf-formulae and denote them typically with the f, fi, fo
symbols. Given the contents of the store, say o, we shall use o = f to denote
the fact that the bf-formula f holds on the store o.

Similarly to Hennessy-Milner logic, bHM-formulae are used to specify se-
quences of properties that have to hold on the sequences of stores produced by
computations. They are also defined to offer choices of paths. They are typically
denoted as h, hi, ho and are inductively defined by the following grammar:

bHM:::f|P‘h1+h2‘h1;h2

There f denotes a bf-formula, h; and hy bHM-formulae and P a variable to be
defined by an equation of the form P = h. Similarly to agents, we assume that h
is guarded in the sense that a bf-formula is requested before variable P is called
recursively.

Ezample 4. As an example, the attack on the Needham-Schroeder protocol may
be discovered by finding a computation that obeys to the bHM-formula X defined
by

X = (not(irunning(Alice, Bob)) ; X) + r_commit(Alice, Bob)

The B2Scala Tool 11

(BF) UUI—':f][ce]

P=h, oFh[h

(PF) o - P]
ot h1 [hg]
(CF) o (h1 + h2) [hs]
ot (ha + h1) [hs]
(SF) ot hl [hg]

ot (hi; he) [(hs; h2)]

Fig. 3. Transition rules for the - relation

(Aloy — (A" | "), o' Fh[h]

EBT) =A@k o) = (AGh | o)

Fig. 4. Extended transition rule

A computation is said to be constrained by a bHM-formula A if the sequence
of stores it induces obeys to h. This is defined by means of the auxiliary +
relation, itself defined by the rules of Figure 3. Intuitively, the notation o - h [/
states that a first bf-formula of h is satisfied on the store o and that the remaining
properties of h’ need to be satisfied. Accordingly rule (BF) asserts that if the
bf-formula f is satisfied by the store o then it is also the first formula to be
satisfied and nothing remains to be established. The symbol € is used there to
denote an empty sequence of bf-formulae. Rule (PF) states that if formula P
is defined as h and if a first bf-formula of h is satisfied by o yielding k' to be
satisfied next then so does P with h’ to be satisfied subsequently. Finally rules
(CF) and (SF) specify the choice and sequential composition of bHM-formulae
as one may expect.

Given the I relation, we can define constrained computations by extending
the — transition relation as the — relation specified by rule (ET) of Figure 4.
Informally this rule states that if, on the one hand, agent A can do a transition
from the store o yielding a new agent A’ and a new store ¢’ and if, on the other
hand, a first formula of h is met by ¢’ yielding A’ as a remaining bHM-formula
to be established, then agent A can make a constrained transition from store o
and bHM-formula h to agent A’ to be computed on store ¢’ and with respect to
bHM-formula 7’.

12 D. Ouardi et al.

It is worth noting that the encoding in B2Scala is quite easy. On the one
hand, basic formulae are defined similarly to Bach primitives through the bf
function and are combined as primitives are. On the other hand, bHM formulae
are defined by the bHM function and recursive definitions are handled in the same
way as recursive agents.

The interpretation of agents is then made with respect to a bHM-formula.
Basically, a step is allowed by run_one function if one step can be made according
to the bHM-formula, as specified by the — transition relation. This results in
a new agent to be solved together with the continuation of the bHM-formula to
be satisfied.

5 The Needham-Schroeder protocol in B2Scala

As an application of the B2Scala tool, let us now code the Needham-Schroeder
protocol and exhibit a computation that reflects G. Lowe’s attack. The interested
reader will find the code, the tool and a video of its usage under the web pages
of the authors at the addresses mentioned in [19].

Allowing for an attack requires to introduce an intruder. It is subsequently
named Mallory. This being said, the first point to address is to declare nonces
and public keys for all the participants of the protocol, namely Alice, Bob and
Mallory. This is achieved by the following token declarations:

val na = Token(” Alice_nonce”)
val nb = Token(” Bob_nonce”)
val nm = Token(” Mallory_nonce”)

val pka = Token(” Alice_public_key”)
val pkb = Token(” Bob_public_key”)
val pkm = Token(” Mallory_public_key”)

It will also be useful later to refer to the three participants, which can be
achieved by means of the following token declarations:

val alice Token(” Alice_as_agent”)
val bob = Token(” Bob_as_agent”)
val mallory = Token(” Mallory_as_intruder”)

To better view who takes which message produced by whom, encrypted
messages introduced in section 3, are slightly extended as si-terms of the form
message(Sender, Receiver, Encryted_Message). Moreover, to highlight which mes-
sage is used in the protocol, we shall subsequently rename encrypted messages
as encrypt,,, with n the number in the sequence of messages. This leads us to
the following declarations:

case class encrypt_i(vNonce: SI_Term, vAg: SI_Term,
vKey: SI_Term) extends SI_Term
case class encrypt_ii(vNonce: SI_-Term, wNonce: SI_Term,
vKey: SI_Term) extends SI_-Term
case class encrypt_iii(vNonce: SI_Term,

The B2Scala Tool 13

val Alice = Agent {
GSum(List (bob, mallory), Y = {
tell (a_running (Y)) =x

tell (message(alice, Y, encrypt-i(na, alice, public_.key(Y)))

GSum(List (a,nb,nm), WDNonce => {
get (message(Y, alice, encrypt_ii(na,WNonce,pka))) =
tell (message(alice ,Y,encrypt_iii (WNonce, public_key (Y)))
tell (a_commit(Y))
b
)
}

Fig. 5. Coding of Alice in B2Scala

vKey: SI_Term) extends SI_Term
case class message(agS: SI_Term, agR: SI_Term,
encM: SI_Term) extends SI_Term

Finally, si-terms are introduced to indicate with whom Alice and Bob start
and close their sessions. They are declared as follows:

case class a_running(vAg: SI_Term) extends SI_Term
case class b_running(vAg: SI_Term) extends SI_Term
case class a_commit(vAg: SI_Term) extends SI_Term
case class b_commit(vAg: SI_Term) extends SI_Term

We are now in a position to code the behavior of Alice, Bob and Mallory.
Coding Alice’s behavior follows the description we gave in Example 2 in Sec-
tion 2. The code is provided in Figure 5. Although Alice wants to send a first
encrypted message to Bob, she can just put her message on the network, hoping
that it will reach Bob. The network is simulated here by the store, which leaves
room to Mallory to intercept it. As a result, the first action is for Alice to start
of a session. Hopefully it is with Bob but, to test for a possible attack, we have
to take into account the fact that Mallory can take Bob’s place. This is coded by
offering a choice between Bob and Mallory by the GSum([bob,mallory]) (...)
construct. Calling this actor Y, Alice’s first action is to tell the initialization
of the session with Y, thanks to the a_running(Y) si-term being told and then
to tell the first encrypted message with her nonce, her identity and the public
key of Y. The sender and receiver of this message are respectively Alice and Y.
Then Alice waits for a second encrypted message with her nonce and what she
hopes to be Bob’s nonce, this message being encrypted by her public key. As the
second nonce is unknown a new choice is offered with the WiNonce si-term. Fi-
nally, Alice sends the third encrypted message with this nonce, encoded with the
public key of Y and terminates the session by telling the a_commit (Y) si-term.
It is worth noting that public_key(Y) consists of a call to a Scala function that
returns the public key corresponding to the Y argument.

) *

) *

14 D. Ouardi et al.

val Bob = Agent {
GSum(List (alice ,mallory), Y => {
tell (b_running(Y)) x
GSum(List (alice ,mallory), VAg = {
get (message(Y,bob,encrypt_i(na,VAg,pkb))) =x

tell (message(bob,Y,encrypt_ii(na,nb,public_.key(Y)))) =

get (message(Y,bob,encrypt_iii(nb,pkb))) x
tell (b_commit (VAg))
b
)

Fig. 6. Coding of Alice in B2Scala

lazy val Mallory:BSC_Agent = Agent {

(GSum(List(na,nb,nm), VNonce => {
GSum(List (alice ,bob), VAg => {
GSum(List (pka,pkb,pkm), VPK => {
get (message(alice ,mallory ,encrypt-i(VNonce,VAg,VPK))
(if (VPK = pkm) {

) *

tell (message(mallory ,bob,encrypt_i (VNonce,VAg, pkb))

} else {

)

tell (message(mallory ,bob,encrypt_i (VNonce,VAg,VPK)))

}) * Mallory
)
)
)

o) +

Fig. 7. Coding of Mallory in B2Scala

Coding Bob’s behavior proceeds in a dual manner. This time the coding
has to take into account that Mallory can have taken Alice’s place. Hence the
first choice GSum([alice,mallory])(...) with Y denoting the sender of the
message. Moreover, the identity of the agent in the first message being got can
be different from Y. A second choice GSum([alice,mallory]) (. ..) results from
that. The whole agent is given in Figure 6.

As an intruder, Mallory gets and tells messages from Alice and Bob, possibly
modifying some parts in case the messages are encrypted with his public key.
This applies for the three kinds of message sent/received by Alice and Bob.
Figure 7 provides the code for the first message. It presents three GSum choices
resulting from the three unknown arguments VNonce, VAg, VPK of the message. In
all the cases, Bob’s attitude is to get the message and to resend it, by modifying
the public key if he can decrypt the message, namely if VPK is his public key.

The B2Scala Tool 15

imj@mozart: ~/Professionnel/Recherche/Confj/Coordination2024/825cala_for_test

jielcome to the Bscala excution engine.
| => root / Compile / packageBin 6:
alledAgent (bscala.bsc_agent.Agent$$SLambda$3452/0x000000080220e440@3d7a5a9¢)
uccessfully evaluated
llory_as_intruder,encrypt ice_nounce,Alice_as_agent,Mallory_public key)))
_intruder,encrypt ice_as_agent,Mallory_public_key)))
agent,Bob_public_key)))

ce_nounce,Bob_noun
ounce,,Bob_nounc

X e_nounce,Bob_nounce
b ot (neeere (W JAlic 5 (Alice_nounce,Bob_nounce,Alice_public_key)))

TellAgent(mess _as_ i ki Fridecuitr e Bob_nounce,Mallory_public_key)))
TellAgent! i i
GetAgent(n C Mallory_as_intruder encrypt_iii(Bob_nounce,Mallory_public_key)))
(Bob_nounce,Bob_public_key)))
GetAgent(Mallory_as ,Bob_ 3 o ob_nounce , Bob_public_key)))
uccessFully evaluated TellAgent(b_commit(Alice_as_agent))

-= RESULT

omputation successfully ended

] Total time: 1 s, completed Feb 23, 2024, 1:16:50 PM

Fig. 8. Screenshot of the computation

To conclude the encoding of the protocol in B2Scala, a bHM-formula F' is
specified, on the one hand, by excluding a session starting between Bob and Alice
and, on the other hand, by requiring the end of the session by Bob with Alice.
These two requirements are obtained through the bf-formulae inproper_init
and end_session, as specified below:

val inproper_init = not(bf(a_running(bob)) or bf(b_running(alice))
val end_session = bf(b_commit(alice))

Formula F' is then coded recursively by requiring F' after a step meeting
inproper_init and by stopping the computation once a step is done that makes
end_session holds. This is specified as follows.

val F = bHM { (inproper_init * F) + end_session }
Computations are started by invoking the following Scala instructions

val Protocol = Agent { Alice || Bob || Mallory }

val bsc_executor = new BSC_Runner

bsc_executor.execute (Protocol ,F)

The result is given in Figure 8. As claimed it produces G. Lowe’s attack. A
key ingredient for this is that imposing inproper_init to hold forces the first
choice in Alice’s code and Bob’s code to be made such that Y takes Mallory as
value.

6 Conclusion

As a complementary line to previous work [9,10], this paper has proposed an
incarnation of the coordination language Bach in Scala, in the form of an internal

16 D. Ouardi et al.

Domain Specific Language, named B2Scala. It has also proposed an Hennessy-
Milner like logic that allows for constraining executions. The Needham-Schroeder
protocol has been modeled with our proposal to illustrate its interest in practice.

Our work is also closely linked to the work on Caos [20], which provides, by
using Scala, a generic tool to implement structured operational semantics and to
generate intuitive and interactive websites. In practice, one has however to define
the semantics of the language under consideration by using Scala. In contrast,
we take an opposite approach which already offers an implementation of the
Bach constructs and in which programmers need to code Bach-like programs in
a Scala manner. Moreover we propose a logic to constraint executions, which is
not proposed in [20].

Scafi ([3]) is another research effort to integrate a coordination language in
Scala. It targets a different line of research in the coordination community by
being focus on aggregate computing. Moreover, to the best of our knowledge, no
support for constrained executions is proposed.

Finally the Needham-Schroeder protocol has been modeled in process alge-
bras. In [15] the author uses CSP and its associated FDR tool to produce an
attack on the protocol. This analysis has been complemented in [1] by using the
mCRL process algebra and its associated model checker. Our work differs by
using a process algebra of a different nature. Indeed the Bach coordination lan-
guages rests on asynchronous communication which happens to a shared space.
This allows to naturally model messages being put on the network as si-terms
told on the store. Similarly the action of an intruder is very intuitively modeled
by getting si-terms. In contrast, [15] and [1] use synchronous communication
which does not naturally introduce the network as a communication medium
and which technically forces them to model the intruder by duplicating Alice
and Bob’s send and receive actions by intercept and fake messages.

7 Acknowledgment

The authors thank the University of Namur for its support. They also thank
the Walloon Region for partial support through the Ariac project (convention
210235) and the CyberExcellence project (convention 2110186).

References

1. Blom, S., Groote, J., Mauw, S., Serebrenik, A.: Analysing the BKE-security Proto-
col with yCRL. In: Ulidowski, I. (ed.) Proceedings of the 6th AMAST Workshop on
Real-Time Systems. Electronic Notes in Theoretical Computer Science, vol. 139,
pp. 49-90. Elsevier (2004)

2. Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM 32(4),
444-458 (1989)

3. Casadei, R., Viroli, M., Aguzzi, G., Pianini, D.: ScaFi: A Scala DSL and Toolkit
for Aggregate Programming. SoftwareX 20, 101248 (2022)

10.

11.

12.

13.

14.

15.

16.

17.

18.

The B2Scala Tool 17

Ciatto, G., Mariani, S., Serugendo, G.D.M., Louvel, M., Omicini, A., Zambonelli,
F.: Twenty Years of Coordination Technologies: COORDINATION Contribution
to the State of Art. Journal of Logical and Algebraic Methods in Programming
113, 100531 (2020)

Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and Access Control in
Open Distributed Agent Systems: The TuCSoN Approach. In: Porto, A., Roman,
G. (eds.) Proceedings of 4th International Conference on Coordination Languages
and Models. Lecture Notes in Computer Science, vol. 1906, pp. 99-114. Springer
(2000)

Darquennes, D., Jacquet, J.M., Linden, I.: On Multiplicities in Tuple-Based Coor-
dination Languages: The Bach Family of Languages and Its Expressiveness Study.
In: Serugendo, G.D.M., Loreti, M. (eds.) Proceedings of the 20th International
Conference on Coordination Models and Languages. Lecture Notes in Computer
Science, vol. 10852, pp. 81-109. Springer (2018)

Gelernter, D., Carriero, N.: Coordination Languages and Their Significance. Com-
munications of the ACM 35(2), 97-107 (1992)

Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In:
de Bakker, J., van Leeuwen, J. (eds.) Proceedings of the International Conference
on Automata, Languages and Programming. Lecture Notes in Computer Science,
vol. 85, p. 299-309. Springer (1980)

Jacquet, J.M., Barkallah, M.: Scan: A Simple Coordination Workbench. In: Niel-
son, H.R., Tuosto, E. (eds.) Proceedings of the 21st International Conference on
Coordination Models and Languages. Lecture Notes in Computer Science, vol.
11533, pp. 75-91. Springer (2019)

Jacquet, J.M., Barkallah, M.: Anemone: A workbench for the Multi-Bach Coordi-
nation Language. Science of Computer Programming 202, 102579 (2021)
Jacquet, J.M., Linden, I.: Coordinating Context-aware Applications in Mobile Ad-
hoc Networks. In: Braun, T., Konstantas, D., Mascolo, S., Wulff, M. (eds.) Pro-
ceedings of the first ERCIM workshop on eMobility. pp. 107-118. The University
of Bern (2007)

Kozen, D.: Results on the Propositional mu-Calculus. Theoretical Computer Sci-
ence 27, 333-354 (1983)

Liu, K., Ye, J., Wang, Y.: The Security Analysis on Otway-Rees Protocol Based
on BAN Logic. In: Proceedings of the Fourth International Conference on Compu-
tational and Information Sciences. pp. 341-344 (2012)

Loreti, M., Lafuente, A.L.: Programming with Spaces (2024), https://github.
com/pSpaces/Programming-with-Spaces/blob/master/README.md

Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) Proceedings of the International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 1055, p. 147-166. Springer
(1996)

Lowe, G.: Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Tiziana, M., Steffen, B. (eds.) Proceedings of the Internation Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, vol. 1055, pp. 147-166. Springer (1996)

Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large
Networks of Computers. Communication of the ACM 21, 993-999 (1978)
Odersky, M., Spoon, L., Venners, B.: Programming in Scala, A comprehensive
step-by-step guide. Artemis (2016)

18

19.

20.

D. Ouardi et al.

Ouardi, D., Barkallah, M., Jacquet, J.M.: Coding and Breaking the Needham-
Schroeder Protocol using B2Scala (2024), https://staff.info.unamur.be/
douardi/Coordination24 or https://staff.info.unamur.be/mbarkall/
Coordination24 or https://staff.info.unamur.be/jmj/Coordination24,
created on February 26th, 2024

Proenca, J., Edixhoven, L.: Caos: A Reusable Scala Web Animator of Operational
Semantics. In: Jongmans, S., A.Lopes (eds.) Proceedings of the 25th International
Conference on Coordination Models and Languages. Lecture Notes in Computer
Science, vol. 13908, pp. 163—171. Springer (2023)

