
Introduction to
Database Reverse Engineering

Jean-Luc Hainaut

May 2002

LIBD - Laboratory of Database Application Engineering
Institut d’Informatique - University of Namur

rue Grandgagnage, 21 l B-5000 Namur (Belgium)
jlh@info.fundp.ac.be − http://www.info.fundp.ac.be/libd

3

4 avril 2007  J-L Hainaut 2002

Credits

This text is based on results of three R&D projects, namely TRAMIS, addressing the baseli-
nes of transformational support to database engineering [Hainaut 1992], PHENIX, dedicated
to AI techniques for Database Reverse Engineering [Joris 1992], and DB-MAIN, coping with
Methods and Tools for Information System Evolution [Hainaut 1994]. So, thanks to Muriel
Chandelon, Catherine Tonneau and Michel Joris (PHENIX), as well as to Mario Cadelli, Ber-
nard Decuyper and Olivier Marchand (TRAMIS).
The current shape and contents of this text is strongly influenced by the work of the DB-
MAIN team: Vincent Englebert (Meta tools, Voyager 2), Jean Henrard (reverse engineering,
program understanding), Jean-Marc Hick (repository, GUI, DB evolution control), Didier
Roland (tool assistants, design process modeling). Besides their theoretical contribution, the
rich DB-MAIN CASE environment, of which they are the architects and craftmen, transforms
the material of this book into practical methods and techniques that can be most helpful for
practitioners. Quite naturally, they must be considered as co-authors of this text.

4

 J-L Hainaut 2001 4 avril 2007

Summary

This text is an extended abstract for a future book devoted to database reverse engineering
(DBRE), considered as a specific, but general purpose, activity of information system engi-
neering, and particularly system reengineering. To give it as large a scope as possible, we
have developed general principles that can easily be specialized for any actual data manage-
ment system, ranging from simple file managers (COBOL or RPG) to modern DB managers
such as relational systems and OO DBMS. These principles are organized as a general DBRE
methodology that is built in a systematic way. This methodology can be specialized accor-
ding to specific DBMS models. It can be used to compare methodologies proposed in the
literature and through reverse engineering CASE tools.
First, the baselines of the realm are developed: what are the problems (1), how to describe and
transform technical and semantic data structures (2), and where are the problem coming from
(3). Then, the principles of a generic methodology are developed (4). It comprises two main
processes, namely Data Structure Extraction (5), through which the complete technical struc-
tures are elicited, and Data Structure Conceptualization (6), that tries to interpret these data
structures into conceptual terms. The methodology is specialized according to some popular
data models (7) and the way in which current CASE technology can support the processes is
discussed (8). A short, but realistic, case study of database reeingineering is presented (9).
A state of the art (10) and bibliographic notes (11) close the presentation.

5

4 avril 2007  J-L Hainaut 2002

Table of contents (tentative)

1. Introduction

2. Data schema specification
A wide-spectrum specification model
Schema transformation

3. Database development revisited
Database design framework
Transformational description of the Logical design process
Optimization techniques
Expressing and coding non-DMS constructs
Analysis of semantics preservation in empirical database design

4. A general database reverse engineering methodology
Deriving a transformational DBRE model
The major phases of the DBRE methodology
The Data Structure Extraction phase
The Data Structure Conceptualization phase

5. The data structure extraction process
Explicit vs implicit constructs
Explicit constructs extraction
The Refinement process: information sources and elicitation techniques
The Refinement process: representative problems
The Refinement process: application to foreign key elicitation

6. The data structure conceptualization process
Basic conceptualization
Schema Untranslation
Schema De-optimization
Conceptual normalization

7. DMS-oriented DBRE methodologies
Standard file DBRE
Hierarchical database DBRE
Network database DBRE
Shallow database DBRE
Relational database DBRE
Other standard DBMS DBRE
Object-oriented database DBRE

6

 J-L Hainaut 2001 4 avril 2007

8. CASE technology for DBRE
Requirements
Project and document representation and management
Support for the data structure extraction process
Support for the data structure conceptualization process
The DB-MAIN CASE environment
State of the art in database CARE tools

9. A case study: Database Migration
Project preparation
Data structure extraction
Data structure conceptualization
Database conversion
The COBOL source code (excerpts)

10. State of the art and conclusion

11. References

12/5/2002  J-L Hainaut 2002

Chapter 1

Introduction

Every information system that has been developed and maintained decently is assumed to
have a complete and up to date technical and functional documentation associated with it.
Each of its components is described in detail and the way it was developed is clearly motivat-
ed. As a consequence, fixing the rare remaining bugs, introducing new functionalities, chang-
ing the architecture, porting parts on another platform, interfacing them with foreign systems
or extracting components to include in, say, a distributed object architecture all are child play.

So, the term legacy system should raise in our mind a feeling of admiration and respect, in
consideration to the experienced developers whose skill left us such beautiful artcraft master-
pieces.
Unfortunately, not everybody shares this view:

A legacy IS is any IS that significantly resists modifications and change. Typically, a
legacy IS is big, with millions of lines of code, and more than 10 years old. [Brodie
1995]

Since no change can be made to an information system before we can get a precise and de-
tailed knowledge on its functional and technical aspects, there is a strong need for scientifi-
cally rebuilding the lost documentation of current systems that are to be maintained and to
evolve in a world of increasingly complex technology.

Database reverse engineering
Reverse engineering (RE) a piece of software consists, among others, in recovering or recon-
structing its functional and technical specifications, starting mainly from the source text of
the programs [Chikofski 1990] [IEEE 1990] [Hall 1992].

The problem is particularly complex with old and ill-designed applications. In this case, not
only no decent documentation (if any) can be relied on, but the lack of systematic methodol-
ogies for designing and maintaining them have led to tricky and obscure code. Therefore, re-
verse engineering has long been recognized as a complex, painful and prone-to-failure
activity, in such a way that it is simply not undertaken most of the time, leaving huge amounts

1-2 1 • Introduction

 J-L Hainaut 2001 12/5/2002

of invaluable knowledge buried in the programs, and therefore definitively lost.
In information systems, or data-oriented applications, i.e. in applications whose central com-
ponent is a database or a set of permanent files, the complexity can be broken down by con-
sidering that the files or databases can be reverse engineered (almost) independently of the
procedural parts. Indeed,
• the semantic distance between the so-called conceptual specifications and the physical

implementation is most often narrower for data than for procedural parts (a COBOL file
structure is easier to understand than a COBOL procedure);

• the permanent data structures are generally the most stable part of applications;
• even in very old applications, the semantic structures that underlie the file structures are

mainly procedure-independent, though their physical structure is highly procedure-
dependent;

• reverse engineering the procedural part of an application is much easier when the seman-
tic structure of the data has been elicited.

Therefore, concentrating on reverse engineering the data components of the application first
can be much more efficient than trying to cope with the whole application.
Being a complex process, database reverse engineering (DBRE) cannot be successful without
the support of adequate tools. An increasing number of commercial products (claim to) offer
DBRE functionalities. Though they ignore many of the most difficult aspects of the problem,
these tools provide their users with invaluable help to carry out DBRE more effectively [Rock
1990].

Motivation and objectives
Reverse engineering is just one step in the information system life cycle. Indeed, painfully
recovering the specifications of a database is not a sufficient motivation per se. It is generally
intended to redocument, convert, restructure, maintain or extend legacy applications. Here
follow some of the most frequent objectives of database reverse engineering.
• Knowledge acquisition in system development. During the development of a new system,

one of the early phases consists in gathering and formalizing users requirements from
various sources such as users interviews and corporate documents analysis. In many
cases, some partial implementation of the future system may exist already, for instance
in the form of a user-developed small system, the analysis of which can bring early use-
ful information.

• System maintenance. Fixing bugs and modifying system functions require understanding
the concerned component, including, in data-centered systems, the semantics and the
implementation of the permanent data structures.

• System reengineering. Reengineering a system is changing its internal architecture or
rewriting the code of some components without modifying the external specifications.
The overall goal is to restart with a cleaner implementation that should make further
maintenance and evolution easier. Quite obviously, the technical aspects as well as its

1-3

12/5/2002  J-L Hainaut 2002

functional specifications have to be clearly understood. The same will be true for the
other three objectives whose description follows.

• System extension. This term designates changing and augmenting the functional goals of
a system, such as adding new functions, or its external behavior, such as improving its
robustness.

• System migration. Migrating a system consists in replacing one or several of the imple-
mentation technologies. IMS/DB2, COBOL/C, monolithic/Client-server, centralized/
distributed are some widespread examples of system migration.

• System integration. Integrating two or more systems yields a unique system that includes
the functions and the data of the former. The resulting system can be physical, in which
case it has been developed as a stand-alone application, or it can be a virtual system in
which a dynamic interface translates the global queries into local queries addressed to
the source systems. The most popular form of virtual integrated system is the federated
database architecture.

• Quality assessment. Analyzing the code and the data structures of a system in some
detail can bring useful hints about the quality of this system, and about the way it was
developed. M. Blaha argues that assessing the quality of a vendor software database
through DBRE techniques is a good way to evaluate the quality of the whole system
[Blaha 1998b].

• Data extraction/conversion. In some situations, the only component to salvage when
abandoning a legacy system is its database. The data have to be converted into another
format, which requires some knowledge on its physical and semantic characteristics. On
the other hand, most datawarehouses are filled with aggregated data that are extracted
from corporate databases. This transfer requires a deep understanding of the physical
data structures, to write the extraction routines, and of their semantics, to interpret them
correctly.

• Data Administration. DBRE is also required when developing a data administration
function that has to know and record the description of all the information resources of
the organization.

• Component reuse. In emerging system architectures, reverse engineering allows devel-
opers to identify, extract and wrap legacy functional and data components in order to
integrate them in new systems, generally through ORB technologies [Sneed 1996] [Thi-
ran 1998].

Specific DBRE problems
Experience quickly teaches that recovering conceptual data structures can be much more
complex than merely analyzing the DDL1 code of the database. Untranslated data structures
and constraints, non standard implementation approaches and techniques and ill-designed

1. The Data Description Language (DDL) is that part of the database management system facilities
intended to declare or build the data structures of the database.

1-4 1 • Introduction

 J-L Hainaut 2001 12/5/2002

schemas are some of the difficulties that the analysts encounter when trying to understand ex-
isting databases from operational system components. Since the DDL code no longer is the
unique information source, the analyst is forced to refer to other documents and system com-
ponents that will prove more complex and less reliable. The most frequent sources of prob-
lems have been identified [Andersson 1994], [Blaha 1995], [Hainaut 1993b], [Petit 1994],
[Premerlani 1993] and can be classified as follows.
• Lack of documentation. Every piece of software should be accompanied by an up to date

documentation. However, it is hard to hide the fact that most of them live undocu-
mented, or, at best, are supported by poor, partial, heterogeneous, inconsistent and obso-
lete documentation, generally on paper.

• Weakness of the DBMS models. The technical model provided by the DMS2, such as
CODASYL-like systems, standard file managers and IMS DBMS, can express only a
small subset of the structures and constraints of the intended conceptual schema. In
favorable situations, these discarded constructs are managed in procedural components
of the application: programs, dialog procedures, triggers, etc., and can be recovered
through procedural analysis.

• Implicit structures. Such constructs have intentionally not been explicitly declared in the
DDL specification of the database. They have generally been implemented in the same
way as the discarded constructs mentioned above.

• Optimized structures. For technical reasons, such as time and/or space optimization,
many database structures include non semantic constructs. In addition, redundant and
unnormalized constructs are added to improve response time.

• Awkward design. Not all databases were built by experienced designers. Novice and
untrained developers, generally unaware of database theory and database methodology,
often produce poor or even wrong structures.

• Obsolete constructs. Some parts of a database have been abandoned, and ignored by the
current programs.

• Cross-model influence. The professional background of designers can lead to very pecu-
liar results. For instance, some relational databases are actually straightforward transla-
tions of IMS databases, of COBOL files or of spreadsheets [Blaha 1995].

About this book
This book is an introduction to the problem of database reverse engineering, considered as a
specific, but general purpose, activity of information system engineering, and particularly
system reengineering. To give it as large a scope as possible, we have developed general
principles that can easily be specialized for any actual data management system (DMS), rang-
ing from simple file managers (COBOL or RPG) to sophisticated DB managers such as rela-
tional systems and OO DBMS. These principles are organized as a DBRE methodology, but

2. There are two kinds of Data Management Systems (DMS), namely file management systems
(FMS) and database management systems (DBMS).

1-5

12/5/2002  J-L Hainaut 2002

we have tried to motivate and to justify them, in such a way that each reader can select and
adapt those which are relevant to the problems (s)he has to cope with. This methodology can
also be perceived as a reference model against which the proposals available in the literature
and in vendor CASE tools and methodologies can be evaluated and compared.

The presentation is organized as follows. In Chapter 2, Data schema specification, we define
a generic data structure description model in which conceptual, logical and physical struc-
tures can be specified accurately and reasoned on, among others through the concept of sche-
ma transformation. Chapter 3, Database development revisited, analyzes the database design
process, emphasizing empirical practices and evaluating how the semantics defined in the
conceptual schema is translated (or discarded) into the operational code. Chapter 4, A general
database reverse engineering methodology, describes the processes of the proposed DBRE
methodology. Two of them are the Data structure extraction (Chapter 5) and the Data struc-
ture conceptualization (Chapter 6) processes. The first one is dedicated to recovering the log-
ical, or DMS-dependent, schema of the database while the second one addresses the problem
of finding the conceptual structures underlying the logical schema. This generic methodolo-
gy is specialized for some popular database managers in Chapter 7, (DMS-oriented method-
ologies), while CASE support is discussed in Chapter 8 (CASE technology for DBRE). A case
study is developed in Chapter 9, A case study: Database Migration. Chapter 10, Bibliograph-
ic notes and conclusion, is devoted to the state of the art and to a open conclusion.
The reader is expected to have some basic knowledge in database management and design.
References [Connolly 2002], [Elmasri 2000] and [Date 1995???] are suggested in data man-
agement, while [Batini 1992], [Teorey 1994???], [Elmasri 2000] and [Blaha 1998] are rec-
ommended in database design.

1-6 1 • Introduction

 J-L Hainaut 2001 12/5/2002

12/5/2002

Chapter 2

Data schema specification

Abstract

Database reverse engineering mainly deals with schema extraction, analysis and transforma-
tion. In the same way as for any other database engineering process, it must rely on a rich set
of models. These models must be able to describe data structures at different levels of ab-
straction, ranging from physical to conceptual, and according to various modeling paradigms.
In addition, statically describing data structures is insufficient. We must be able to describe
how a schema has evolved into another one. For instance, a physical schema leads to a logical
schema, which in turn is translated into a conceptual schema. These transitions, which form
the basis of DBRE, can be explained in a systematic way through the concept of schema trans-
formation. In this section, we describe a data structure model with which schemas at different
abstraction levels and according to the most common paradigms can be described precisely.
Then, we present schema transformation operators that can explain inter-schema transitions.

2-2 2 • Data schema specification

 J-L Hainaut 2002 12/5/2002

2.1 A wide-spectrum specification model

In database development methodologies, the complexity is broken down by considering three
abstraction levels. The engineering requirements are distributed among these levels, ranging
from correctness to efficiency. At the conceptual level, the designer produces a technology-
independent specification of the information, expressed as a conceptual schema, relying on
an ad hoc formalism, called a conceptual model. At the logical level, the information is ex-
pressed in a model for which a technology exists. For instance, the required information is
organized into a relational or object-oriented logical schema. Since reverse engineering is
concerned with legacy systems, we will also consider CODASYL DBTG, IMS, TOTAL/IM-
AGE, COBOL, BASIC, RPG or ADABAS logical schemas. While a logical schema is based
on a family of DMS models, a physical schema is dedicated to a specific DMS. In addition
to the logical constructs, it includes technical specifications that govern data storage, access
mechanisms, concurrency protocols or recovery parameters. We will talk about network log-
ical schemas, but about, say, IDMS physical schemas.

Due to the scope of this presentation, we cannot adopt specific formalisms for each of the ab-
straction levels. Instead, we will base the discussion on generic models that can easily be spe-
cialized into specific models. For instance, this model hierarchy can be translated into OMT/
relational/ORACLE 8, into ERA/CODASYL/IDMS or into ORM/OO/O2 design methodol-
ogies. These models are derived from a unique model the formal basis of which has been de-
veloped in [Hainaut 1989].

Conceptual specifications
A conceptual schema mainly specifies entity types (or object classes), relationship types and
attributes. Entity types can be organized into ISA hierarchies (organizing supertypes and sub-
types), with total and disjoint properties. Attributes can be atomic or compound. They are
characterized with a cardinality constraint [i-j] stating how many values can be associated
with a parent instance (default is [1-1]). A relationship type has 2 or more roles. Each role
also has a cardinality constraint [i-j] that states in how many relationships an entity will ap-
pear with this role. Entity types and relationship types can have identifiers, made up of at-
tributes and/or remote roles. The source value set of an attribute can be a basic domain (e.g.,
numeric, boolean, character, time), a user-defined domain (e.g., VAT_number, Address,
Pers_ID, URL) or an object class (in some OO models). Some of these constructs are illus-
trated in Figure 2-1.
In some situations, we will need more complex constraints, such as existence constraints,
which state that a set B of components (attributes or remote roles) can be constrained by co-
existence (either all elements of B must have a value or none), exclusive (at most one element
of B can have a value) and at-least-one (at least one element of B must have a value) relations.

The exact terms used to denote these constructs will vary according to the specific model cho-
sen. For instance, entity types will be called object classes in OMT or NOLOT in NIAM-like
formalisms.

2.1 A wide-spectrum specification model 2-3

12/5/2002  J-L Hainaut 2002

Figure 2-1: Conceptual structures.

Logical specifications
A logical schema comprises data structure definitions according to one of the commonly used
families of models: relational model, network model (CODASYL DBTG), hierarchical mod-
el (IMS), shallow model (TOTAL, IMAGE), inverted file model (DATACOM/DB), standard
file model (COBOL, C, RPG, BASIC) or object-oriented model. For instance, the schema
of Figure 2-2 can be considered as a possible relational translation the conceptual schema of
Figure 2-1. Similarly, one could have designed a network, hierarchical or OO equivalent
schema. Since we want to discuss reverse engineering problems independently of the DMS
model, we will use general terms such as record type, inter-record relationship type and field.
For a specific model, these terms will translate into the specific terminology of this model.
For instance, record types will be called table in relational schemas, segment types in hierar-
chical schemas, and data sets in shallow schemas. An inter-record relationship will be read
set type in the network model, access path in the shallow model and parent-child relationship
in the hierarchical model.

New constructs appear at this level, such as special kinds of multivalued attributes (bag, list,

This schema includes entity types (or
object classes) PERSON, CUSTOMER,
SUPPLIER, ORDER and PRODUCT.
PERSON has two disjoint subtypes, CUS-
TOMER and SUPPLIER. Relationship
type from is binary while detail is ternary.
Each ORDER entity appears in exactly 1
from relationship (cardinality [1-1]), and in
at least one detail relationships (cardinality
[1-N]).
Entity types and relationship types can be
given attributes. For entity type PERSON,
attribute Name is atomic, single-valued and
mandatory. Address is a compound
attribute. Its component Num is atomic, sin-
gle-valued and optional (cardinality [0-1]).
Phone is multivalued and optional: there
are from 0 to 5 values per entity.
{PID} is the identifier of PERSON. The
identifier of ORDER is made of external
entity type from.CUSTOMER and of local
attribute ONum.
There cannot exist more than one detail
relationship with the same ORDER and
PRODUCT entites.

1-1

0-N

from

1-N 0-N

0-N

detail
Qty
id: ORDER

PRODUCT

D

SUPPLIER
Account

PRODUCT
PNum
Name
Price
id: PNum

PERSON
PID
Name
Address

Num[0-1]
Street
City

Phone[0-5]
id: PID

ORDER
ONum
Date
id: from.CUSTOMER

ONum

CUSTOMER
Category

2-4 2 • Data schema specification

 J-L Hainaut 2002 12/5/2002

or array), foreign keys and redundancy constraints. The equality constraint is a special kind
of foreign key such that there exists an inverse inclusion constraint; see {PID, ONUM} of
DETAIL in Figure 2-2.

Figure 2-2: Abstract logical structures. This relational schema is an approximate translation of the
schema of Figure 2-1. The term record type must read table, field must read column and primary
id must read primary key.

Physical specifications
Finally, physical specifications can be specified through a physical schema. Due to the large
variety of DMS-dependent features, it is not easy to propose a general model of technical con-
structs. As far as reverse engineering is concerned, we will consider three essential concepts
that may bring structural or semantic hints:
• record collection or storage, which is an abstraction of file, data set, tablespace, dbspace

and any record repository in which data is permanently stored.
• access key, which represents any path providing a fast and selective access to records

that satisfy a definite criterion; indexes, indexed set (DBTG), access path, hash files,
inverted files, indexed sequential organizations all are concrete instances of the concept
of access key;

• cluster, which is a physical grouping of records according to some logical relation in
order to get fast access to these related records.

The first two constructs have been given a graphical representation (Figure 2-3). In database

This schema defines seven logical record
types. PERSON has mandatory logical fields
(PID, NAME, ADD_STREET and
ADD_CITY) and one optional (nullable) field,
ADD_NUM. Its primary identifier is {PID}.
Field {PID} of ORDER is a foreign key to
CUSTOMER (targeting its primary id). The
group {PID, ONUM} of DETAIL is a multi-
component foreign key. In addition, there is
an inclusion constraint from {PID, ONUM}
of ORDER to {PID, ONUM} of DETAIL.
Combining these two constraints translates
into an equality constraint (symbol equ).
{PID} of CUSTOMER is both a primary id
and a foreign key to PERSON.

SUPPLIER
PID
ACCOUNT
id: PID

ref

PRODUCT
PNUM
NAME
PRICE
id: PNUM

PHONE
PID
PHONE
id: PID

PHONE
ref: PID

PERSON
PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY
id: PID

ORDER

PID
ONUM
DATE
id: PID

ONUM
ref: PID

DETAIL
PID
ONUM
PRODUCT
QTY
SUPPLIER
id: PID

ONUM
PRODUCT

ref: SUPPLIER
ref: PRODUCT
equ: PID

ONUM

CUSTOMER
PID
CATEGORY
id: PID

ref

2.1 A wide-spectrum specification model 2-5

12/5/2002  J-L Hainaut 2002

design and development, other physical constructs can be of interest, such as page size, extent
size, file size, buffer size, various fill factors, index technology, physical device and site as-
signment, etc. They will be ignored in this presentation.

Figure 2-3: Abstract physical structures. This schema derives from the logical schema of Figure 2-
2.

About schema modeling in DBRE
Since database reverse engineering starts from physical specifications and is to yield logical
and conceptual schemas, it will naturally be based on the same models hierarchy as database
development. An outstanding characteristic of database reverse engineering is that, most of
the time, an in-progress schema includes physical, logical and conceptual constructs. Indeed,
DBRE basically is a trial and error, exploratory and incremental process1. Therefore, while
some parts of the schema may be, hopefully, conceptualized, other parts can be unprocessed

This schema is made up of five physical
record types and two record collections.
Collections PROD_FILE will store records
of types CUSTOMER, ORDER and
DETAIL.
Primary id {PID} of CUSTOMER is sup-
ported by an access key, denoted by symbol
acc(ess key). The same holds for the other
identifiers of the schema. An access key is
also associated with some foreign keys
(those which are not a prefix of another
access key) and another one is defined on
plain field {NAME}.
Other technical details are not shown in this
graphical representation, such as record
clusters, physical field sizes and coding
schemes, page lengths, buffer management,
index technologies and parameters, etc.

1. According to the standard taxonomy of process models, this activity can best be described as a spi-
ral process.

SUPPLIER
PID
ACCOUNT
id: PID

ref acc

PRODUCT

PNUM
NAME
PRICE
id: PNUM

acc
acc: NAME

PHONE

PID
PHONE
id: PID

PHONE
acc

ref: PID

PERSON
PID
NAME
ADD_NUM[0-1]
ADD_STREET
ADD_CITY
id: PID

acc
acc: NAME

ORDER

PID
ONUM
DATE
id: PID

ONUM
acc

ref: PID

DETAIL

PID
ONUM
PRODUCT
QTY
SUPPLIER
id: PID

ONUM
PRODUCT
acc

ref: SUPPLIER
acc

ref: PRODUCT
acc

equ: PID
ONUM

CUSTOMER

PID
CATEGORY
id: PID

ref acc

CUST_FILE

CUSTOMER
DETAIL
ORDER

PROD_FILE

PRODUCT
SUPPLIER

2-6 2 • Data schema specification

 J-L Hainaut 2002 12/5/2002

so far, that is, only their physical constructs are elicited. This means that a data schema being
reverse engineered must be described in a model that can simultaneously express physical,
logical and conceptual constructs.

2.2 Schema transformation

It can be shown that almost all database engineering processes can be modeled as data struc-
ture transformations. Indeed, the production of a schema can be considered as the derivation
of this schema from a (possibly empty) source schema through a chain of elementary opera-
tions called schema transformations. Adding a relationship type, deleting an identifier, trans-
lating names or replacing an attribute with an equivalent entity type, all are examples of basic
operators through which one can carry out such engineering processes as building a concep-
tual schema [Batini 1992; Batini 1993], schema normalization [Rauh 1995], DBMS schema
translation [Hainaut 1993b; Rosenthal 1988; Rosenthal 1994], schema integration [Batini
1992], schema equivalence [D’Atri 1984; Jajodia 1983; Kobayashi 1986; Lien 1982], data
conversion [Navathe 1980], schema optimization [Hainaut 1993b; Halpin 1995] and others
[Blaha 1996; De Troyer 1993; Fahrner 1995]. As will be shown later on, they can be used to
reverse engineer physical data structure as well [Bolois 1994; Casanova 1984; Hainaut
1993b; Hainaut 1993a; Hainaut 1995].

Definition
A (schema) transformation is most generally considered as an operator by which a source data
structure C is replaced with a target structure C’. Though a general discussion of the concept
of schema transformation would include techniques through which new specifications are in-
serted (semantics-augmenting) into the schema or through which existing specifications are
removed from the schema (semantics-reducing), we will mainly concentrate on techniques
that preserve the specifications (semantics-preserving).

Figure 2-4: The two mappings of schema transformation Σ ≡ <T,t>.

A transformation Σ can be completely defined by a pair of mappings <T,t> where T is called

C C’=T(C)

c c’=t(c)

T

instance of instance of

t

2.2 Schema transformation 2-7

12/5/2002  J-L Hainaut 2002

the structural mapping and t the instance mapping. T explains how to replace C with C’,
while t states how instances of C must be replaced with instances of C’ (Figure 2-4).

Another equivalent way to describe mapping T consists of a pair of predicates <P,Q>, where
P is the weakest precondition C must satisfy for T being applicable, and Q is the strongest
postcondition specifying the properties of C’. So, we can also write Σ ≡ <P,Q,t>.

Semantics-preserving transformations
Each transformation Σ1≡ <T1,t1> can be given an inverse transformation Σ2≡ <T2,t2>, de-
noted Σ-1 as usual, such that, for any structure C,

Σ1 is said to be a reversible transformation if the following property holds, for any con-
struct C and any instance c of C,

So far, Σ2 being the inverse of Σ1 does not imply that Σ1 is the inverse of Σ2. Moreover,
Σ2 is not necessarily reversible. These properties can be guaranteed only for a special variety
of transformations, called symmetrically reversible.

Σ1 is said to be a symmetrically reversible transformation, or more simply semantics-pre-
serving, if it is reversible and if its inverse is reversible too. Or, more formally, if both fol-
lowing properties hold, for any construct C and any instance c of C,

In this case, P2 = Q1 and Q2 = P1. A pair of symmetrically reversible transformations is com-
pletely defined by the 4-uple <P1,Q1,t1,t2>. Except when explicitly stated otherwise, all the
transformations we will use in this presentation are semantics-preserving. In addition, we
will consider the structural part of the transformations only.

Some popular semantics-preserving transformations
We propose in Figure 2-5 and Figure 2-6 two sets of the most commonly used transforma-
tional operators. The first one is sufficient to carry out the transformation of most conceptual
schemas into relational logical schemas. The second comprises additional techniques partic-
ularly suited to derive optimized schemas. Experience suggests that a collection of about thir-
ty of such techniques can cope with most database engineering processes, at all abstraction
levels and according to all current modeling paradigms2.

2. Provided they are based on the concept of record, entity or object.

P1 C() C T2 T1 C()()=⇒

P1 C() C T2 T1 C()()=() c t2 t1 c()()=()∧⇒

P1 C() C T2 T1 C()()=() c t2 t1 c()()=()∧⇒

P2 C() C T1 T2 C()()=() c t1 t2 c()()=()∧⇒

2-8 2 • Data schema specification

 J-L Hainaut 2002 12/5/2002

Figure 2-5: Six major generic transformations with their inverse. Cardinalities a, b, c and d must be
replaced with actual values.

ISA-RT: Materializ-
ing an ISA relation
into relationship
type. Inverse: RT-
ISA

⇔

RT-ET: Transform-
ing a rel-type into an
entity type. Inverse:
ET-RT. ⇔

Att-ET/val: Trans-
forming an attribute
into an entity type
(value representa-
tion). Inverse: ET-
Att.

⇔

Att-ET/inst: Trans-
forming an attribute
into an entity type
(instance representa-
tion). Inverse: ET-
Att.

⇔

Disagg: Disaggregat-
ing a compound
attribute. Inverse:
Aggreg

⇔

RT-FK: Transform-
ing a binary relation-
ship type into a
foreign key. Inverse:
FK-RT.

⇔

 C
C1

 B
B1

 A
A1
A2

1-1

0-1 c

1-1

0-1b

 C
C1

 B
B1

 A

A1
A2

c-d

a-b e-f
r

R1
R2

 C B A

1-1

e-f

rc

1-1

c-d

rb

1-1

a-b

ra

R
R1
R2
id: rc. C

ra. A
rb. B

 C B A

A
A1
A2[a-b]
A3

1-Na-b r

EA2
A2
id: A2

 A
A1
A3

A
A1
A2[a-b]
A3

1-1a-b r

EA2
A2
id: r. A

A2

 A
A1
A3

A
A1
A2

A21
A22

A

A1
A2_A21
A2_A22

0-Na-b r

 B
B1
B2
id: B1

 A
A1

 B
B1
B2
id: B1

 A
A1
B1[a-b]
ref: B1

2.2 Schema transformation 2-9

12/5/2002  J-L Hainaut 2002

Figure 2-6: Four additional generic transformations with their inverse. Though not indispensable in
theory, they can prove useful, among others in optimization reasonings. As will be discussed later
on, this simple form of MultAtt-Serial and MultAtt-Single are not semantics-preserving since right-
side schemas include special forms of array.

Being functions, transformations can be composed in order to form more powerful operators.
Complex transformation combinations can be built through transformation plans, which are
high level semi-procedural scripts that describe how to apply a set of transformations in order
to fulfil a particular task or to meet a goal. Figure 3-3 is a nice illustration of a simple trans-
formation plan that explains how to transform a conceptual schema into relational structures.
It is important to note that a transformation plan can be considered as a strategy for a higher
level transformation Σ to be performed on a whole schema. The <P,Q> part of this transfor-
mation explains on whet kind of schemas Σ can be applied (P) and what will the resulting
schema look like. In other words, in the script of Figure 3-3, P defines the Entity-relationship
model while Q describes the relational model3. This analysis leads to an important conclu-
sion for the following: all engineering processes, be they related to forward or reverse engi-
neering, can be considered as schema transformations.

MultAtt-Serial: Replacing a
multivalued attribute with a
series of single-valued attributes
that represents its instances.
Inverse: Serial-MultAtt

⇒

MultAtt-Single: Replacing a
multivalued attribute with a sin-
gle-valued attribute that repre-
sents the concatenation of its
instances. Inverse: Single-Mul-
tAtt.

⇒

Split: Transforming a binary
relationship type into a foreign
key. Inverse: Merge.

⇔

AddTechID: A semantics-less
attribute is added and made the
primary ID of the ET. Inverse:
RemTechID.

⇔

3. This observation is the basis of several components of the DB-MAIN CASE tool (Chapter 8) such
the Schema Analysis assistant, the history manager and the method engine.

A
A1
A2[1-3]: char(5)

A
A1
A21: char(5)
A22[0-1]: char(5)
A23[0-1]: char(5)

A
A1
A2[1-3]: char(5)

A
A1
A2: varchar(15)

 A
A1
A2
A3
A4

1-1 1-1r
 A'
A3
A4

 A
A1
A2

 A
A1
A2
id: A1

 A
IDA
A1
A2
id: IDA
id': A1

2-10 2 • Data schema specification

 J-L Hainaut 2002 12/5/2002

A practical application of semantics-preserving schema transformations
The four schemas of Figure 2-7 illustrate the step by step transformation of a source schema
(schema 1) into an equivalent relational schema (schema 4) in which a partitioned ISA hier-
archy has been reduced by upward inheritance. Since semantics-preserving transformations
only have been used, both schema are semantically equivalent.

Figure 2-7: A complex schema transformation. First, the ISA relation is transformed through ISA-
RT. Then, subtypes are transformed into attributes (ET-Att), which in turn are disaggregated (Dis-
agg).

schema 1 schema 2

schema 4 schema 3

P
 C
C1
C2
id: C1

 B
B1

 A
A1
A2
id: A1

1-1

0-1 c

1-1

0-1b

C
C1
C2
id: C1

B
B1

 A
A1
A2
id: A1
exact-1: c.C

b.B

 A
A1
A2
B1[0-1]
C1[0-1]
C2[0-1]
id: A1
id': C1
coex: C1

C2
exact-1: C1

B1

 A
A1
A2
B1[0-1]
C[0-1]

C1
C2

id: A1
id': C.C1
exact-1: C

B1

12/5/2002

Chapter 3

Database development revisited

Each operational database D is the end product of a design process that starts with users re-
quirement collection and that ends with code generation. What happens in between depends
on the level of formality of the methodology followed by the developers and, in fine, on the
maturity of the software engineering practices in the concerned development department.
Whatever the way in which D was actually produced, we can imagine that it could have been
obtained through a chain of standard design processes that translates in a systematic and re-
liable way the users requirements into this database as it appears currently. In the course of
this chain, five important sets of documents would have been elaborated, namely the concep-
tual schema of D, its logical schema, its physical schema, the users views and the code that
implements the data structures defined in the physical schema and in the users views. Of
course, we all know that D was probably built by directly and incrementally encoding the
DDL code according to the intuition and the expertise of the developer, and that these four
outstanding documents never existed but in our mind. Nevertheless, trying to imagine what
could have happened in this hypothetical design process can be a fruitful exercise since it will
allow us to identify how and why the legacy database D has got to be what it currently is.

In this section, we will reexamine the database development process in order to identify the
design decisions that shape legacy and current systems, and to understand how the intended
semantics, aka users requirements, are implemented (or left unimplemented) in these systems
and in their environments.

3.1 Database design framework

Most textbooks on database design of the eighties and early nineties propose a five step ap-
proach that is sketched in Figure 3-1. Through the Conceptual Analysis phase, the users re-
quirements are translated into a conceptual schema, which is the formal and abstract
expression of users requirements. The Logical Design phase transforms these abstract speci-

3-2 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

fications into data structures (the logical schema) that comply with the data model of a family
of DMS. For instance, the conceptual schema is translated into relational, OO or standard file
data structures. Through the Physical Design phase, the logical schema is augmented with
DMS-specific technical specifications that make it implementable into a specific DMS and
that gives it acceptable performance. From the logical schema, users views are derived that
meet the requirements of classes of users (View Design). Finally, the physical schema and the
users views are coded into the DDL of the DMS (Coding)
Three of these processes are worth being examined a bit further (Figure 3-2).
• Conceptual Analysis includes, among others, two major sub-processes, namely Basic

Analysis, through which informal or semi-formal information sources are analyzed and
their semantic contents are translated into conceptual structures, and (Conceptual) Nor-
malization, through which these structures are given such additional qualities as read-
ability, normality, minimality, extensibility, compliance with representation standards,
etc. (see [Batini 1992] for instance).

• Logical Design may include, besides the translation phase, reshaping of the schema in
order to make it meet technical or organizational requirements such as minimum
response time, minimum disk space or low maintenance cost. We have called this pro-
cess Optimization, since performance improvement is the most common objective.
Some methodologies distinguish pre-translation optimization (sometimes called Concep-
tual optimization), which occurs before model translation, and in which the target DMS
is ignored (see [Batini 1992] for instance) and post-translation optimization (Logical
Optimization), which uses DMS-dependent reasonings and techniques.

• Coding can be more complex than generally presented in the literature and than carried
out by CASE tools. Indeed, any DMS can only cope with a limited range of structures
and integrity constraints for which its DDL provides an explicit syntax. For instance, a
SQL-2 DBMS knows about machine value domains, unique keys, foreign keys and man-
datory columns only. If such constructs appear in a physical schema, they can be explic-
itly declared in the SQL-2 script. On the contrary, all the other constraints must be either
ignored or expressed in any other way (at best through check predicates or triggers, but
more frequently through procedural sections scattered throughout the application pro-
grams). So we must distinguish two kinds of operational code: codeddl, which comprises
the explicit declaration of constructs, expressed in the DDL of the DMS and codeext that
expresses, in more or less readable and identifiable form, all the other constructs.

From now on, we will ignore the Conceptual Analysis phase, which has no impact on reverse
engineering, except for the Normalization process, which will also be useful as a finishing
touch. The other two processes will be discussed in more detail in the following sections.
Though database design has been one of the major theoretical and applied research domains
in software engineering in the last two decades, and though it can be considered as a fairly
well mastered problem, we are faced here with files and database that have not been built ac-
cording to well structured methodologies. Tackling the reverse engineering of a database
needs a deep understanding of the forward process, i.e., database design, not only according

3.1 Database design framework 3-3

12/5/2002  J-L Hainaut 2002

to standard and well formalized methodologies, but above all when no such rigorous meth-
ods, or on the contrary more sophisticated ones, have been followed. In other words, we in-
tend to grasp the mental rules that govern the intuitive and empirical behavior of practitioners.
The approach should not be normative, as in forward engineering, where practitioners are told
how to work, but rather descriptive, since we have to find out how they have worked.

Figure 3-1: Main products and processes of standard database design methodologies.

D
at

ab
as

e
D

es
ig

n

Users requirements

View Design

Coding

Physical Design

Logical Design

Conceptual Analysis

Logical schema

Users views

Operational code

Physical schema

Conceptual schema

3-4 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

Figure 3-2: Common strategies for Conceptual Analysis, Logical Design and Coding.

Figure 3-3: Sample transformation plan for translating a conceptual schema into a relational logical
schema. This plan is a suggested strategy for the Model Translation process (Figure 3-2)

1. for each supertype E, do:
apply Mat-ISA to E;

2. for each non-functional relationship type R, do:
apply RT-ET to R;

3. while compound or multivalued attributes still exist, do:
for each top-level attribute A that is both single-valued and compound, do:

apply Disaggr to A;
for each top-level attribute A that is multivalued, do:

apply Att-ET/inst to A;
4. until no relationship types can be transformed, repeat:

for each relationship type R, do:
if R meets the precondition of RT-FK, apply RT-FK to R;

5. until no relationship types remain, repeat:
for each relationship type R, do:

apply AddTechID to the entity type of R where an identifier is missing;
do 4;

L
og

ic
al

 D
es

ig
n

C
on

ce
pt

ua
l A

na
ly

si
s

Users requirements Conceptual schema Physical schema

codeddl codeext

(Optimized)
Logical schema

(Normalized)
Conceptual schema

Raw concept. sch.

CodingConceptual Optimiz.

Model Translation

Logical Optimiz.

Basic Analysis

Normalization

3.2 Transformational description of the Logical design process 3-5

12/5/2002  J-L Hainaut 2002

3.2 Transformational description of the Logical
design process

Most of the processes that make database design methodologies can be described as schema
transformations, that can in turn be refined, directly or indirectly, into lower-level processes
or operators that are primitive schema transformations as defined in Section 2.2. Such is the
case for the logical design phase, which ideally is a pure semantic-preserving transformation
of the conceptual schema into a DMS-compliant optimized logical schema. As an illustration,
the translation procedure of Figure 3-3, based on the semantics-preserving transformations of
Figure 2-5, can be a simple strategy for the Model Translation process specialized for stan-
dard relational structures. We will call this sort of procedures a transformation plan. It can
be seen as the strategy implementing a higher-lever transformational process, here Relational
Logical design. Transformation plans can be developed for every DMS. However, it must
be taken into account that such a strategy is ideal, in that it does not address any criteria other
than RDBMS compliance and semantics preservation. Empirical strategies also depend on
criteria such as performance (see below), and generally are more complex. Nevertheless,
each of them can be defined in terms of a limited set of primitive schema transformations.
Modeling the major database design processes as symmetrically reversible transformations is
important because it naturally lead to the transformational modeling of the inverse process,
i.e. database reverse engineering. Indeed, reversing the order of the operations and replacing
each of them with its inverse can be a good starting point for a reverse engineering strategy.
Though things will prove a bit more complex than considered so far, this framework will be
adopted in the following.

3.3 Optimization techniques

Very few legacy systems have been developed without optimization. Identifying the optimi-
zation structures that have been introduced is important in order to discard them when trying
to recover the semantics of the data structures. In particular, knowing what were the technical
constraints, the main optimization criteria, the development culture and the programmer’s
skills can prove essential to interpret correctly large and complex schemas.

Several optimization criteria can be considered, either independently or simultaneously: sec-
ondary memory space, main memory space, response time, update time, transaction through-
put, exploitation time, portability, maintenance cost, evolution cost are some examples. Few
studies have proposed a comprehensive and generalized treatment of the problem, so that in
most cases, addressing this issue will be based on the developer’s expertise and on some
vague recommendations provided by the technical manuals of the DBMS. We will briefly
discuss four classes of optimization techniques.

3-6 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

Discarding constructs
Intentionally ignoring a costly construct can be a good way to decrease the overall cost of the
system. Such a practice can lead to leaving aside identifiers and foreign keys. Unrealistic
constraints defined at the conceptual level (such as the average amount of expenses per de-
partment cannot increase of more than 5% per month) will generally be dropped at the logical
level. Since there will be no formal trace of these constructs, they could be recovered through
data analysis techniques or through examination of the system environment only.

Structural redundancy
Structural redundancy techniques consist in adding new constructs in a schema such that their
instances can be computed from instances of other constructs. Attribute duplication, relation-
ship type composition and aggregated values (such as count, sum, average) representation are
some examples of common optimization structural redundancies. These transformations are
(trivially) symmetrically reversible since they merely add derivable constructs without mod-
ifying the source constructs. The reverse transformation consists in removing the redundant
constructs. The main problem is to detect the redundancy constraint that states the equiva-
lence of construct.

Normalization redundancy
The most common unnormalization technique are based on merging two entity types linked
by a one-to-many relationship type into a single entity type. This technique allows obtaining
the information of both entity types in one logical access, thereby decreasing the access time.
On the other hand, it induces redundancies. An unnormalized structure is detected in entity
type B by the fact that the determinant of a dependency F is not an identifier of B.

Restructuration
Restructuration consists in replacing a construct with other constructs in such a way that the
resulting schema yield better performance. These techniques introduce no redundancy.
Four popular techniques are vertical partitioning and horizontal partitioning of entity types as
well as their inverse.
• Horizontal partitioning consists in replacing entity type A with entity types A1 and A2 of

identical structure in such a way that the population of A is partitioned into those of A1
and A2. This technique yield smaller data sets, smaller indexes and allows for better
space allocation and management (e.g., backup and distribution). Horizontal partition-
ing can be applied to relationship types as well. For instance the population of many-to-
many relationship type R can be split into one-to-many relationship type R1 that collects
selected instances, while many-to-many relationship type R2 collects the others. The
implementation of R1 (as a foreign key) can be more efficient than that of R2 (through a
relationship table).

3.4 Expressing and coding non-DMS constructs 3-7

12/5/2002  J-L Hainaut 2002

• Its inverse, i.e. horizontal merging, decreases the number of entity types and makes
physical clustering easier.

• Vertical partitioning of entity type A partitions its attribute/role components into two (or
more) entity types A1 and A2, linked by a one-to-one relationship type (transformation
Split). This partitioning is driven by processing considerations: components that are
used simultaneously are grouped into a specific entity type. This decreases the physical
length of A entities, and improves access time.

• Vertical merging is the inverse technique (transformation Merge). It consists in merging
two entity types that are linked by a one-to-one relationship type, or equivalently by an
identifying foreign key, in order to avoid double access to get related entities.

Of course, there are many other techniques that can yield improvement according to some
performance criteria. We mention some of them.
A frequent restructuration consists in replacing some one-to-many relationship types by for-
eign keys (RT-FK), even in DBMS supporting such relationship types (IMS, CODASYL).
The argument can be to avoid complex structures (e.g., logical relationships in IMS databas-
es) or to physically split the database into independent fragments that are easier to distribute,
to recover or to backup (e.g., in CODASYL databases).

Implementing a large size attribute as a reference entity type (Att-ET) can reduce disk space
when coupled with the AddTechID transformation.
Implementing a dependent entity type as a multivalued, compound attribute integrated into
the parent entity type (ET-Att) can improve access time (Figure 6-3, reverse).

We will mention a last restructuration technique, namely AddTechID, through which a long
and/or multi-component primary identifier is replaced with a short, meaningless, attribute.
This will reduce the size of the primary index, thus improving the access time, but this will
also reduce the complexity and the size of the foreign keys that include copies of this identi-
fier. The former primary identifier gets the secondary status, in such a way that no semantics
is lost.

3.4 Expressing and coding non-DMS constructs

Since these specifications are ignored by the DMS, their expression, called codeext in Figure
3-2, is up to the developer/programmer, and therefore exhibits a very large variety of coding
schemes, even when one developer only is involved. However, due to the forensic nature of
reverse engineering activities, it is not completely useless to recall some of the most popular
ways to express non-DMS constructs. We will distinguish two categories of translation tech-
niques, namely internal and external (vis à vis the DMS). To make things more concrete,
we consider that the non-DMS construct is integrity constraint IC.

3-8 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

Internal techniques
They use special programming facilities of the DMS to encode either IC itself, or the proce-
dural fragments that ensure the satisfaction of IC. We will mention four of them, that specif-
ically appear in RDBMS and in some OO-DBMS. It is fairly easy to locate this type of code
and to identify the construct it implements.
• Predicates. Constraint IC can be expressed as a table predicate (check) or as a schema

predicate (assertion). For each event that modifies the contents of the table(s) men-
tioned in the predicate, the DMS will ensure that the update will not violate the predicate,
otherwise the operation is cancelled.

• Views with check option. If a view is defined on a single table and if it includes a
where part that encodes IC, this view yields the consistent rows only, i.e., those which
satisfy IC. The additional clause with check option instructs the DMS to filter the
insert and update operations as well, in such a way that only consistent rows can appear
in the base table.

• Triggers. This event-condition-action mechanism allows the developer to define the
behavior of the DMS when it is asked to insert, delete or update rows in a specific table.
The triggering operation can be aborted or compensated in such a way that the final state
of the database will always be consistent according to IC.

• Stored procedures. These centralized procedures are associated with the database and
can be invoked from any process: user interface, application programs, triggers, other
stored procedures. They can be developed as the unique API through which the pro-
grammer can update the database (no direct privileges are granted for insert, delete
and update primitives). Each of these procedures will include all the code necessary to
ensure that the integrity constraints, included IC, are satisfied.

External techniques
They resort to code fragments in the application programs to encode the management of IC.
Detecting the constructs they implement can be very complex and tedious, and makes one of
the most challenging problems of reverse engineering. Unfortunately, they are far more fre-
quent than internal techniques. We will describe five of them.
• Access module. Each application program uses the services of an API that is in charge

of managing the data, including data integrity control. Constraints such as IC are taken
in charge through ad hoc code sections that ensure that no actions called for by the appli-
cation program can corrupt the data. This API is developed as a general purpose library
by the programmer. This technique is often used for masking standard file management
idiosyncrasies, therefore improving the portability of programs. This clean architecture
is very helpful when reverse engineer the data structures.

• Code fragments scattered throughout the procedural code. This approach encom-
passes several techniques. Their common point is that a specific code section is inserted
before each data modification statement that may lead to the violation of IC. The main

3.5 Analysis of semantics preservation in empirical database design 3-9

12/5/2002  J-L Hainaut 2002

problems are the high degree of duplication of this code and the unavoidable discrepan-
cies among all these sections, particularly when the programs have been written by dif-
ferent persons at different periods. This practice, which unfortunately is the most
widespread, makes reverse engineering, as well as maintenance, particularly complex.

• User interface validation code fragments. Validation routines that check that IC can-
not be violated are associated with dialog objects in the user interface. This was the priv-
ileged way of managing data integrity in early RDBMS such as Oracle 5, through its
dialog manager SQL-Forms. This technique was adequate for interactive transactions,
but left data unprotected against direct DML calls from application programs. However,
it gives reliable hints for reverse engineering.

• Pre-validation programs. Candidate data modifications are batched in a modification
file. Then, at regular interval, they are checked against IC (and other constraints). The
modifications that satisfy IC are introduced in the database. This primitive but efficient
technique, as well as the next one, is very helpful for reverse engineering.

• Post-validation programs. All the modifications are carried out unvalidated. At defi-
nite time points, the data are checked, and those which violate IC are removed from the
database.

3.5 Analysis of semantics preservation in empirical
database design

The final, operational description of the database can be seen as the result of a chain of trans-
formations that have degraded the origin conceptual schema. This degradation takes two
forms. Firstly, some semantics originally expressed in the conceptual schema has been dis-
carded at different levels of the whole process, thus yielding an incomplete implementation.
Secondly, the final form naturally is less readable than its conceptual source and therefore
will be more difficult to interpret.

The origin of schema degradation
Let us reexamine each process of database design as far as it introduces some degradation of
the conceptual specifications.
• Logical design. This phase may introduce the two forms of degradation to a large extent.

• Conceptual and logical optimization. The schema is restructured according to design
requirements concerning access time, distribution, data volume, availability, etc. It is
obscured due to non-semantic restructuration, such as structure splitting or merging,
denormalization or structural redundancies. These processes can deeply change the
shape of the logical schema, but, ideally, they should not change its information con-
tents. However, we have seen that intentionally discarding constructs can be a way to
lower the cost of the system.

3-10 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

• Model translation. The data structures are transformed in order to make them compli-
ant with the model of the target DMS. Generally, this process deeply changes the
appearance of the schema in such a way that the latter is still less readable. For
instance, in standard files (resp. relational DBMS) many-to-many relationship types
are transformed into record types (tables) while many-to-one relationship types are
transformed into reference fields (foreign key). In a CODASYL schema, a secondary
identifier is represented by an indexed singular set. In a TOTAL or IMAGE data-
base, a one-to-many relationship type between two major entity types is translated
into a detail record type. Frequently, names have to be converted due to the syntacti-
cal limitations of the DMS or of the host languages.
On the other hand, due to the limited semantic expressiveness of older (and even cur-
rent) DMS, this translation is seldom complete. It produces two subsets of specifica-
tions: the first one being strictly DMS-compliant while the second one includes all
the specifications that cannot be taken in charge by the DMS. For instance, referen-
tial constraints cannot be processed by standard file managers. In principle, the union
of these subsets completely translates the conceptual specifications.

• Physical design. Operates at the internal level, and does not modify the schema as it is
seen by the programmer. However, physical constructs often are declared with the same
DDL as logical constructs, so that the DDL code can be obstructed with physical declara-
tion. This particularly true with older DBMS, such CODASYL and IMS, for which the
borderline between logical and physical concepts was still unclear.

• Coding. Only the subset of the physical schema that is strictly DMS-compliant can be
translated into the DDL of the DMS (codeddl). The discarded specifications are either
ignored, or translated into external languages, systems and procedures that push the
coded constructs out of control of the DMS (codeext).
Another phenomenon must be pointed out, namely structure hiding (Figure 3-4). When
translating a data structure into DMS-DDL, the developer may choose to hide some
information, leaving to the host language the duty to recover it. A widespread example
consists in declaring some subset of fields (or even all the fields) of a record type as a
single, unstructured, field; recovering the hidden structure can be made by storing the
unstructured field values into a host program variable that has been given the explicit
structure. Finally, let's observe that the DMS-DDL schema is not always materialized.
Many standard file managers, for instance, do not offer any central way to record the
structure of files, e.g., in a data dictionary.

3.5 Analysis of semantics preservation in empirical database design 3-11

12/5/2002  J-L Hainaut 2002

Figure 3-4: An example of structure hiding. The decomposition of both the key part and the data
part is replaced with anonymous data structures in the actual coded structure. Though it can simplify
data description and data usage, this frequent technique makes data structure considerably more
complex to recover.

• View design. Since a view merely describes derived data from its logical description, it
should not contribute to the problem of semantics preservation/degradation. However, as
illustrated in Figure 3-5, a view can express constructs that have not been preserved in
the operational code. Therefore, it will be an essential source of information when we try
to recover constructs discarded from the operational code.

Figure 3-5: A view can express richer data structures than the DDL code that implements the global
physical schema.

Transformational analysis of empirical designs
Ignoring the conceptual phase, which is of no interest for DBRE, as well as users views der-
ivation, database forward engineering can be modeled by (the structural part of) transforma-
tion FE:

code = FE(CS)
where code denotes the operational code and CS the conceptual schema.

Denoting the logical and physical schemas by LS and PS and the logical design, physical de-
sign and coding phases by LD, PD and COD, we can refine the previous expression as fol-
lows:

LS = LD(CS)
PS = PD(LS)
code = COD(PS)

We consider function σ(D) which gives the semantics1 of document D. Ideally, we should
have

Intended record structure

 01 CUSTOMER.
 02 C-KEY.
 03 ZIP-CODE pic X(8).
 03 SER-NUM pic 9(6).
 02 NAME pic X(15).
 02 ADDRESS pic X(30).
 02 ACCOUNT pic 9(12).

Coded record structure

 01 CUSTOMER.
 02 C-KEY pic X(14).
 02 filler pic X(57).

create table CUSTOMER(CID numeric(8),NAME char(24),ADDRESS char(80));
create view CUSTOMERS(CID, NAME, STREET, CITY) as
 select CID,NAME,substr(ADDRESS,7,32),substr(ADDRESS,39,24) from CUSTOMER;

3-12 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

 σ(code) = σ(PS) = σ(LS) = σ(CS),
but we know that empirical processes do not meet this property. Let us call ∆ the semantics
of CS that disappeared in the process. We get:

σ(code’) ∪ ∆ = σ(CS)
where code’ denotes the actual code.

As we learned in this section, ∆ has been lost at several levels. This means that ∆ should be
partitioned into ∆ = ∆l ∪ ∆p ∪ ∆c, where ∆l denotes the conceptual specifications left aside
during LD, ∆p the semantics ignored in PD and ∆c the semantics discarded in COD.
Let us call LS’ the partial logical schema resulting from LD and PS’ the actual result of PD.
We have:

σ(LS’) ∪ ∆l = σ(LD(CS))
σ(PS’) ∪ ∆p = σ(PD(LS’))
σ(code’) ∪ ∆c = σ(COD(PS’))

Finally, we can refine this analysis by considering that:

1. code can be split into its DDL part and its external part: code’ = codeddl’ ∪ codeext’

2. accordingly, process COD comprises two subprocesses2: COD ≡ {CODddl; CODext}

3. process LD comprises three subprocesses, namely conceptual optimization, model trans-
lation and logical optimization; to simplify things, we will merge both optimization pro-
cesses: LD ≡ {OPT; TRANS}

4. the discarded specifications ∆ have not disappeared, but rather are hidden somewhere in
the operational system or in its environment. For instance, they can be discovered in the
data themselves (through data analysis techniques) or found in the exploitation and users
procedures (and can be elicited by interviewing users, exploitation engineers or develop-
ers). Let us call E(∆) the observable information sources, such as file contents, environ-
ment behavior and users knowledge, in which we can find traces of ∆.

Now we can complete the description of the semantics properties of forward processes. For

1. We can leave the concept of semantics undefined and base the discussion on its intuitive interpre-
tation. Considering the goal of the conceptual schema, and adopting the conceptual formalism as a
pure expression of all the semantics of the system and only it, we could write: σ(CS) = CS. How-
ever, due to the fact that several conceptual schemas can describe the same application domain (a
fact sometimes called semantic relativism), we will distinguish CS as a document from its seman-
tic contents σ(CS).
If needed, we can consider that the semantics of a document is a consistent set of logic assertions
such that if D1 ⊆ D2, then σ(D2) ⇒ σ(D1). To simplify the discussion, we will consider that the
semantics is expressed in such a way that we can also write: σ(D1) ⊆ σ(D2). In addition this for-
malism must be such that σ(D1 ∪ D2) = σ(D1) ∪ σ(D2).

2. The notation P ≡ {P1;P2} means that carrying out process P1 implies carrying out P1 and P2 in
any order. In the same way, P ≡ P2oP1 means that P consists in carrying out P1 first, then P2 on
the result just obtained.

3.5 Analysis of semantics preservation in empirical database design 3-13

12/5/2002  J-L Hainaut 2002

ideal approaches, we have:

code = FE(CS)
FE ≡ {CODddl; CODext}oPDo{OPT; TRANS}

or LS = {OPT; TRANS}(CS)
PS = PD(LS)
codeddl = CODddl(PS)
codeext = CODext(PS)
code = codeddl ∪ codeext

with σ(code) = σ(codeddl) ∪ σ(codeext) = σ(PS) = σ(LS) = σ(CS),

For empirical approaches, we have:
code’ ∪ E(∆) = FE(CS)

or LS’∪ E(∆l) = {OPT; TRANS}(CS)
PS’∪ E(∆p) = PD(LS’)
codeddl’ ∪ E(∆c) = CODddl(PS’)
codeext’ = CODext(PS’)
code’ = codeddl’ ∪ codeext’

with σ(code’) ∪ ∆ = σ(codeddl’) ∪ σ(codeext’) ∪ ∆c ∪ ∆p ∪ ∆l

= σ(PS’) ∪ ∆p ∪ ∆l
= σ(LS’) ∪ ∆l

= σ(CS)
So, we have redefined empirical database forward engineering as a reversible transformation
made up of reversible sub-processes that losslessly transform their input specifications into
equivalent output specifications.

3-14 3 • Database development revisited

 J-L Hainaut 2001 12/5/2002

12/5/2002

Chapter 4

A general database reverse engineering
methodology

Abstract

The problems that arise in database reverse engineering naturally fall in two categories that
are addressed by the two major processes in DBRE, namely data structure extraction and
data structure conceptualization. By naturally, we mean that these problems relate to the re-
covery of two different schemas (resp. logical and conceptual), and that they require quite dif-
ferent concepts, reasonings and tools. In addition, each of these processes grossly appears as
the reverse of a standard database design process (resp. coding/physical design and logical
design). The Data structure extraction process recovers the complete logical schema, includ-
ing the explicit and implicit structures and properties. The Data structure conceptualization
process recovers the conceptual schema underlying this logical schema.
In this section, we will first derive a transformational model of DBRE, then we will describe
the contents and the objective of the proposed database reverse engineering methodology.
The specific techniques and reasonings of each process will be developed in Chapters 5 and 6.

4-2 4 • A general database reverse engineering

 J-L Hainaut 2002 12/5/2002

4.1 Deriving a transformational DBRE model

Since reverse engineering consists in recovering (among others) the conceptual schema from
the operation code, it is reasonable to consider that this process is just the reverse of forward
engineering. Though things will prove a bit more complex, this hypothesis is a good starting
point.

CS = FE-1(code)
We first observe that reversing a hierarchically decomposable process consists in inverting
the order of the sub-processes, then replacing each sub-process with its inverse. For systems
that have been developed according to an ideal approach, we have:

CS = FE-1(code)
FE-1 ≡ {OPT-1; TRANS-1}oPD-1o{CODddl

-1; CODext
-1}

or PSddl = CODddl
-1(codeddl)

PSext = CODext
-1(codeext)

PS = PSddl ∪ PSext
LS = PD-1(PS)
CS = {OPT-1; TRANS-1}(LS)

Grossly speaking, the suggested DBRE approach comprises three steps:
1. recovering the physical schema PS from the operational code {codeddl, codeext}, i.e.,

undoing the Coding forward process; this consists in uncoding the DDL code, then
uncoding the non-DDL code and finally merging them into PS; we will call this process
Extraction of PS

2. recovering the logical schema LS from the physical schema PS, i.e., undoing the physi-
cal design forward process; this should be fairly simple since the forward process con-
sists in adding technical constructs to the logical structures;

3. recovering the conceptual schema CS from the logical schema LS, i.e. removing and
transforming the optimization constructs (what we will call de-optimizing LS) and inter-
preting the logical constructs in terms of their source conceptual structures (we will call
this unstranslation of LS); the whole step will be called Conceptualization of LS.

Now, we consider applications that have been developed according to some empirical ap-
proach. The main difference is that a part of the semantics called (∆) may lie outside the sys-
tem (in E(∆)), i.e., it has not be wired in the coded part of this system. This semantics can be
found elsewhere, for instance in the environment of the application or in the data. As a con-
sequence, we must base the reverse engineering process on incomplete code (codeddl’ and
codeext’) and on E(∆). The fact that the missing semantics has been lost at different levels is
irrelevant. Therefore, we will consider that analyzing E(∆) is a task of the extraction process.
The overall process can still be refined according to the following remarks.
• We observe that undoing the physical process is a fairly trivial task that can be integrated

as a sub-process of the Extraction step; it will be called Schema Cleaning.

4.1 Deriving a transformational DBRE model 4-3

12/5/2002  J-L Hainaut 2002

• It will appear in the following that the extraction of codeddl’ is an easy task while the
extraction of specifications from codeext’ and E(∆) is much more complex; we suggest
to call the analysis of codeddl’ DDL code Extraction while the analysis of {codeext’;
E(∆)} will be called Schema refinement.

• The Conceptualization step works on a logical schema that may include awkward con-
structs, such as inconsistent names, that will first be processed through a sub-process
called Schema Preparation.

• The Conceptualization step yields a conceptual schema that can include awkward con-
structs too. Retructuring this conceptual schema in order to make it look better accord-
ing to corporate standards will be called Conceptual Normalization.

Figure 4-1: The main DBRE processes as the inverse of forward processes. Symbol inv on the for-
ward/reverse correspondences means that each process is the inverse of the other, while symbol
= indicates they are the same.

We can now propose a generic database reverse engineering framework that takes into ac-

E
xtraction

Logical schema

Schema-Refinement

C
onceptualisationPreparation

Conceptual schema

E(∆)

codeddl

codeext

Ph
. D

es
.,

V
ie

w
, C

od

Logical schema

L
og

ic
al

 D
es

ig
n

Conceptual schema

Normalization

Normalization

 Optimization

Model Translation Untranslation

De-optimization

Schema-CleaningPhysical design

Coding DDL-code-Extraction

=

inv

inv

inv

inv

Database Forward Engineering Database Reverse Engineering

4-4 4 • A general database reverse engineering

 J-L Hainaut 2002 12/5/2002

count empirical designs.
CS = RE(code’ ∪ E(∆))
RE ≡ CONCEPTUALIZATIONoEXTRACTION
EXTRACTION ≡ Schema-CleaningoSchema-RefinementoDDL-code-Extraction
CONCEPTUALIZATION ≡

Normalizationo{De-optimization;Untranslation}oPreparation

Logical-schema = EXTRACTION(code’ ∪ E(∆))
Conceptual-schema = CONCEPTUALIZATION(Logical-schema)

Explicit-physical-schema = DDL-code-Extraction(codeddl’)
Complete-physical-schema =

Schema-Refinement(Explicit-physical-schema, codeext’∪E(∆))
Logical-schema = Schema-Cleaning(Complete-physical-schema)
Raw-conceptual-schema =

{De-optimization; Untranslation}oPreparation(Logical-schema)
Conceptual-schema = Normalization(Raw-conceptual-schema)

This discussion has ignored the coded users views, which can prove an important information
source. They will be introduced in the detailed description of the Extraction process.
The framework we have just built can be sketched graphically in order to show the links with
the forward processes (Figure 4-1).

4.2 The major phases of the DBRE methodology

The general architecture of the reference DBRE methodology is outlined in Figure 4-2. It
shows clearly the two main processes that will be described in Chapters 5 and 6.

Experience teaches that managing the whole project and identifying the relevant information
sources is not an easy task. Therefore we add a preliminary step called Project Preparation,
which aims at identifying and evaluating the components to analyze, at evaluating the re-
sources needed and at defining the operations planning. Its main sub-processes are (1) System
identification, through which the files, programs, screens, reports, forms, data dictionaries,
repositories, program sources and documentation are identified and evaluated, (2) Architec-
ture recovery, that consists in drawing the main procedural and data components of the sys-
tem and their relationships, (3) Identification of the relevant components: all the components
that bring no information are discarded, (4) Resource identification, in terms of skill, work
force, calendar, machine, tools and budget, and finally (5) Operation planning. We will not
develop this point, for which the reader is suggested to consult references such as [Aiken
1996], which develops various aspects of DBRE project management.
The Data structure extraction process aims at rebuilding a complete logical schema in which
all the explicit and implicit structures and properties are documented. The main source of

4.3 The Data Structure Extraction phase 4-5

12/5/2002  J-L Hainaut 2002

problems is the fact that many constructs and properties are implicit, i.e. they are not explic-
itly declared, but they are controlled and managed through, say, procedural sections of the
programs. Recovering these structures uses DDL code analysis, to extract explicit data struc-
tures, and data structure elicitation techniques, that lead to the recovery of implicit constructs.

The Data structure conceptualization process tries to specify the semantic structures of this
logical schema as a conceptual schema. While some constructs are fairly easy to interpret
(e.g., a standard foreign key generally is the implementation of a one-to-many relationship
type), others pose complex problems due to the use of tricky implementation and optimiza-
tion techniques.
By construction, these processes are generic, in that they are independent of the DMS, of their
data model and of the programming languages used to develop the application.

Figure 4-2: General architecture of the reference database reverse engineering methodology.

4.3 The Data Structure Extraction phase

This phase consists in recovering the complete DMS schema, including all the implicit and
explicit structures and constraints. True database systems generally supply, in some readable
and processable form, a description of this schema (data dictionary contents, DDL texts, etc.).
Though essential information may be missing from this schema, the latter is a rich starting
point that can be refined through further analysis of the other components of the application

Project Preparation

DS Extraction

DS Conceptualization

(Optimized)
Logical schema

(Normalized)
Conceptual schema

codeddl codeext E(∆)

4-6 4 • A general database reverse engineering

 J-L Hainaut 2002 12/5/2002

(views, subschemas, screen and report layouts, procedures, fragments of documentation, da-
tabase content, program execution, etc.). The problem is much more complex for standard
files, for which no computerized description of their structure exists in most cases. The anal-
ysis of each source program provides a partial view of the file and record structures only. For
most real-world applications, this analysis must go well beyond the mere detection of the
record structures declared in the programs.
In this methodology, the main processes of Data structure elicitation are the following (Fig-
ure 4-3).
• DMS-DDL code analysis.

This rather straightforward process consists in analyzing the data structures declaration
statements (in the specific DDL) included in the schema scripts and application pro-
grams. It produces a first-cut logical schema. Extracting physical specifications from the
system data dictionary, such as SQL system catalog, is of the same nature as DDL analy-
sis.

• Physical integration
When more than one DDL source has been processed, the analyst is provided with sev-
eral, generally different, extracted (and possibly refined) schemas. Let us mention some
common situations: base tables and views (RDBMS), DBD and PSB (IMS), schema and
subschemas (CODASYL), file structures from all the application programs (standard
files), DB schema and COBOL copybooks (source code fragments that are included in
the source program at compile time), etc. The final logical schema must include the spec-
ifications of all these partial views, through a schema integration process. This process
differs from the approaches proposed in the literature on the integration of conceptual
views. In particular, we can identify three specific characteristics of physical schema
integration.

1.Each physical schema is a view of a unique and fully identified physical object, namely
the legacy database. Consequently, syntactic and semantic conflicts do not represent
divergent user views but rather insufficient analysis.

2.Physical and technical aspects of the data can be used in correspondence heuristics,
such as offset and length of data fields.

3.There may be a large number of such views. For instance, a set of COBOL files serving
a portfolio of 1,000 program units will be described by 1,000 partial views. In addi-
tion, there is no global schema available for these files. The latter will be recovered
by integrating these views.

• Schema refinement
The Schema refinement process is a complex task through which various information
sources are searched for evidences of implicit or lost constructs. The explicit physical
schema obtained so far is enriched with these constructs, thus leading to the Complete
physical schema. The complexity of the process mainly lies in the variety and in the
complexity of the information sources. Indeed, the codeext part of the system includes,

4.3 The Data Structure Extraction phase 4-7

12/5/2002  J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E(∆), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

DDL code Extraction

Physical Integration Schema Refinement

Schema Cleaning

raw physical schemas

view codeddlschema codeddl

explicit physical sch.

complete physical sch.

codeext E(∆)

(Optimized)
Logical schema

4-8 4 • A general database reverse engineering

 J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(Optimized)
Logical schema

(Normalized)
Conceptual schema

Raw conceptual sch.

Normalization

Preparation

De-optimization

Untranslation

B
as

ic
C

on
ce

pt
ua

liz
at

io
n

4.4 The Data Structure Conceptualization phase 4-9

12/5/2002  J-L Hainaut 2002

intended to model the application domain: program counter, name of the last user, copy
of the screen layouts, program savepoints. In addition, this phase carries out cosmetic
changes, such as improving the naming conventions and restructuring some awkward
parts of the schema.

• Basic conceptualization.
The main objective of this process is to extract all the relevant semantic concepts under-
lying the logical schema. Two different problems, requiring different reasonings and
methods, have to be solved: schema untranslation and schema de-optimization.
Schema untranslation. The logical schema is the technical translation of conceptual
constructs. Through this process, the analyst identifies the traces of such translations,
and replaces them with their original conceptual constructs. Though each data model
can be assigned its own set of translating (and therefore of untranslating) rules, two facts
are worth mentioning. First, several data models can share an important subset of trans-
lating rules (e.g. COBOL files and SQL structures). Secondly, translation rules consid-
ered as specific to a data model are often used in other data models (e.g., foreign keys in
IMS and CODASYL databases). Hence the importance of generic approaches and tools.
Schema de-optimization. The logical schema is searched for traces of constructs
designed for optimization purposes. Three main families of optimization techniques
should be considered: denormalization, structural redundancy and restructuring.

• Conceptual normalization.
This process restructures the basic conceptual schema in order to give it the desired qual-
ities one expects from any final conceptual schema, such as expressiveness, simplicity,
minimality, readability, genericity, extensibility. For instance, some entity types are
replaced with relationship types or with attributes, is-a hierarchies are made explicit,
names are standardized, etc.

4-10 4 • A general database reverse engineering

 J-L Hainaut 2002 12/5/2002

20/5/2002

Chapter 5

The data structure extraction process

Abstract

The goal of this phase is to recover the complete DMS schema, including all the implicit and
explicit structures and constraints. As explained above, the main problem of the Data Struc-
ture Extraction phase is to discover and to make explicit, through the Refinement process, the
structures and constraints that were either implicitly implemented or merely discarded during
the development process. In this section we define the concept of implicit construct, we de-
scribe the DDL code extraction process then we analyze the problems and elicitation tech-
niques of implicit constructs. We conclude by the application of these techniques to the
recovery of foreign keys.

5-2 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

5.1 Explicit vs implicit constructs

An explicit construct is a component or a property of a data struture that is declared through
a specific DDL statement. An implicit construct is a component or a property that holds in
the data structure, but that has not been declared explicitly. In general, the DMS is not aware
of implicit constructs, though it can contribute to its management (through triggers for in-
stance). The analysis of the DDL statements alone leaves the implicit constructs undetected.
The most popular example certainly is that of foreign key, which we will use to explain this
point. Let us consider the code of Figure 5-1, in which two tables, linked by a foreign key,
are declared. We can say that this foreign key is an explicit construct, insofar as we have used
a specific statement to declare it.

Figure 5-1: Example of an explicit foreign key.

Figure 5-2 represents a fragment of an application in which no foreign keys have been de-
clared, but which strongly suggests that column OWNER is expected to behave as a foreign
key. If we are convinced that this behaviour must be taken for an absolute rule, then OWNER
is an implicit foreign key.

Figure 5-2: Example of a (possible) implicit foreign key.

By examining the expressive power of DMSs, compared with that of semantics representa-
tion formalisms, and by analyzing how programmers work, we can identify five major sourc-
es of implicit constructs.

1. Structure hiding.
Structure hiding concerns a source data structure or constraint S1, which could be imple-

 create table CUSTOMER(C-ID integer primary key,
 C-DATA char(80))
 create table ORDER(O-ID integer primary key,
 OWNER integer
 foreign key(OWNER) references CUSTOMER)

 create table CUSTOMER(C-ID integer primary key,
 C-DATA char(80))
 create table ORDER(O-ID integer primary key,
 OWNER integer)
 ...
 exec SQL select count(*) in :ERR-NBR from ORDER
 where OWNER not in (select C-ID from CUSTOMER)
 end SQL
 ...
 if ERR-NBR > 0 then
 display ERR-NBR,'referential constraint violations';

5.1 Explicit vs implicit constructs 5-3

20/5/2002  J-L Hainaut 2002

mented in the DMS. It consists in declaring it as another data structure S2 that is more
general and less expressive than S1. In COBOL applications for example, a compound/
multivalued field, or a sequence of contiguous fields can be represented as a single-val-
ued atomic field (e.g., a filler). In a CODASYL or IMS database, a one-to-many relation-
ship type can be implemented as a many-to-many link, through a record/segment type, or
can be implemented by an implicit foreign key. In an SQL-2 database, some referential
constraints can be left undeclared by compatibility with older DMSs. The origin of stuc-
ture hiding is always a decision of the programmer, who tries to meet requirements such
as field reusability, genericity, program conciseness, simplicity, efficiency as well as
consistency with legacy components of the application.

2. Generic expression.
Some DMSs offer general purpose functionalities to enforce a large variety of con-
straints on the data. For instance, current relational DBMSs propose column and table
check predicates, views with check option, triggers mechanisms and stored procedures.
These powerful techniques can be used to program the validation and the management of
complex constraints in a centralized way. The problem is that there is no standard way
to cope with these constraints. For instance, constraints such as referential integrity can
be encoded in many forms, and their elicitation can prove much more complex than for
declared foreign keys.

3. Non declarative structures.
Non declarative structures have a different origin. They are structures or constraints that
cannot be declared in the target DMS, and therefore are represented and checked by
other means, external to the DMS, such as procedural sections in the application pro-
grams or in the user interface. Most often, the checking sections are not centralized, but
are distributed and duplicated (frequently in different versions), throughout the applica-
tion programs. For example, standard files commonly include foreign keys, though cur-
rent DMS ignore this construct. In the same way, CODASYL DBMSs do not provide
explicit declaration of one-to-one relationship types, which often are implemented as
(one-to-many) set types + integrity validation procedures.

4. Environmental properties.
In some situations, the environment of the system garantees that the external data to be
stored in the database satisfy a given property. Therefore, the developers have found it
useless to translate this property in the data structures, or to enforce it through DBMS or
programming techniques. Of course, the elicitation of such constraints cannot be based
on data structure and program analysis. For example if the content of a sequential file
comes from an external source in which uniqueness is garanteed for one of its field, then
the database file inherits this property, and an identifier can be asserted accordingly.

5. Lost specifications.
Lost specifications correspond to facts that have been ignored or discarded, intentionally
or not, during the development of the system. This phenomenon corresponds to flaws in
the system that can translate into corrupted data. However, lost specifications can be

5-4 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

undetected environmental properties, in which case the data generally are valid.

5.2 Explicit construct extraction

This process clearly is the simplest one in DBRE. It consists in associating physical abstrac-
tions with each DDL construct. The set of rules is easy to state in most DMSs, provided the
target abstract physical model includes a sufficiently rich set of features, such as the one we
adopted in Chapter 2. We must be reminded that each DDL, even in the most modern DMSs,
includes clauses intended to declare physical concepts (e.g. indexes and clusters), logical con-
cepts (record types, fields and foreign keys) as well as conceptual concepts (identifiers). Dis-
tributing the DMS constructs into the standard abstraction levels is sometimes tricky (as in
IMS for instance). Table 1 and Table 2 show the main abstraction rules for converting CO-
BOL and SQL-2 code into abstract physical structures. Similar rule sets can be defined for
CODASYL, DL/1, TOTAL/IMAGE or OO data structures.

Table 1: Main abstraction rules for COBOL file structures.

COBOL statement Physical abstraction
select S assign to P define storage S

record key is F define a primary identifier with field F;
define an access key with field F.

alternate record key is F define a secondary identifier with field F;
define an access key with field F.

alternate record key is F
with duplicates

define an access key with field F.

fd S
01 R

define record type R within storage S.

05 F pic 9(n) define numeric field F with size n, associated with its parent
structure (record type or compound field).

05 F pic X(n) define alphanum field F with size n, associated with its par-
ent structure (record type or compound field).

05 F1.
 10 F2 ...

define compound field F1, with components F2, etc.

05 F ... occurs n times define multivalued field F, with cardinality n.

5.3 The Refinement process: information sources and elicitation techniques 5-5

20/5/2002  J-L Hainaut 2002

Almost all CASE tools propose some kind of DLL extractors for the most popular (generally
relational) DBMSs. Some of them are able to extract relational specifications from the sys-
tem data dictionary as well. Few can cope with non relational structures.

5.3 The Refinement process: information sources and
elicitation techniques

Though there exist a fairly large set of potentially implicit constructs, they can all be elicited
from the same information sources and through a limited set of common techniques. Figure
5-3 is a summary of the main information sources and of their processing techniques. We will
describe them in some detail.

The most common sources of information
Except in small size projects, more than one source will be analyzed to find the data structures
and its properties. We will discuss briefly the most common ones.
1. Generic DMS code fragments.

As already discussed, modern database schemas may include SQL code sections that
monitor the behaviour of the database. Check/assertion predicates, triggers and stored
procedures are the most frequent. They generally express in a concise way the validation
of data structures and integrity constraints. They are less easy to analyze since there is

Table 2: Main abstraction rules for relational structures.

SQL statement Physical abstraction
create dbspace S ... define storage S

create table T (...) in S define record type T within storage S.

name numeric(n) define numeric field F with size n.

name char(n) define character field F with size n.

... not null define the current field as mandatory

primary key (F) define a primary identifier with field(s) F

... unique (F) define a secondary identifier with field(s) F

foreign key (F) references T define field(s) F a foreign key referencing record type T.

create index ... define an access key with field(s) F.

create unique index on T(F) define a secondary identifier with field(s) F;
define an access key with field(s) F.

5-6 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

no standard way to code a specific integrity constraint.
2. Application programs.

The way data are used, transformed and managed in the programs brings essential infor-
mation on the structural properties of these data. For instance, through the analysis of
data validation procedures, the analyst can learn what the valid data values are, and
therefore what integrity constraints are enforced. This kind of search is called Usage pat-
tern analysis.
Being large and complex information sources, programs require specific analysis tech-
niques and tools. Dataflow analysis, dependency analysis, programming cliché analysis
and program slicing are some examples of program processing techniques that resort to
the domain of program understanding. They will be described below.

Figure 5-3: Detail of the Schema Refinement process.

3. HCI procedural fragments.
The user-program dialogs generally are monitored by procedures that are triggered by
interface events or by database update events. Quite often, these procedures are intended
to protect the data against invalid operations, and therefore implement integrity con-

E(∆)

codeext

explicit physical sch.

complete physical sch.

Schema
Refinement

Schema
Analysis

Program
Analysis

Forms/Screen
Analysis

Extern. Specific.
Analysis

Interview
Analysis

Data Analysis

Extern. documents
Analysis

Experimentation

DMS generic code

Programs

HMI proc. fragments

Check
Triggers

St. Procedures

Screens Reports Forms

Documentation

Extern. Data Diction.

CASE repositories

Users interviews

Develop. interviews

Experts interviews

Data

Worksheets
Formatted texts

Prog. execution

5.3 The Refinement process: information sources and elicitation techniques 5-7

20/5/2002  J-L Hainaut 2002

straints validation. Example: SQL-Forms in Oracle 5 applications.

4. Screen/form/report layout.
A screen form or a structured report can be considered as derived views of the data. The
layout of the output data as well as the labels and comments can bring essential informa-
tion on the data. Populated screens, forms and reports can be processed through data
analysis techniques as well [Choobineh 88; Mfourga 1997].

5. Current documentation.
In some reverse engineering projects, the analyst can rely on some documentation related
to the source system. Though these documents often are partial, obsolete and even incor-
rect, they can bring useful information on the key system components. Of course, the
comments that programmers include in the programs can be a rich source of information
too, provided their reliability can be assessed.

6. External data dictionaries and CASE repositories.
Third-party or in-house data dictionary systems allow data administrators to record and
maintain essential descriptions of the information resources of an organization, including
the file and database structures. They can provide informal but very useful description of
the data with which one can better grasp their semantics. The main problem with these
sources is that they generally have no automatic 2-way link with the databases, and
therefore may include incomplete, obsolete or erroneous information. The same can be
said of CASE tools, that can record the description of database structures at different
abstraction levels. While such tools can generate the database definition code, they gen-
erally offer no easy way to propagate direct database structure modifications into these
schemas.

7. Domain knowledge.
It is unconceivable to start a reverse engineering project without any knowledge on the
application domain. Indeed, being provided with an initial mental model of the objec-
tives and of the main concepts of the application, the analyst can consider the existing
system as an implementation of this model. The objective is then to refine and to vali-
date this first-cut model.
In this context, interviewing regular or past users, developers or domain knowledge
experts can be a fruitful source of information, either to build a first domain model, or to
validate the model elaborated so far.

8. Data.
The data themselves can exhibit regular patterns, or uniqueness or inclusion properties
that provide hints that can be used to confirm or disprove structural hypotheses. The
analyst can find hints that suggest the presence of identifiers, foreign keys, field decom-
position, optional fields, functional dependencies [Bitton 1989], existence constraints, or
that restrict the value domain of a field for instance.

9. Non-database sources.
Small volumes of data can be implemented with general purpose software such as spead-

5-8 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

sheet and word processors. In addition, semi-structured documents are increasingly con-
sidered as a source of complex data that also need to be reverse engineered. Indeed,
large text databases can be implemented according to representation standard such
SGML or HTML that can be considered as special purpose DDL.

10. Program execution.
The dynamic behaviour of a program working on the data gives information on the
requirements the data have to meet to be recorded in the files, and on links between
stored data. In particular, combined with data analysis, filled-in forms and reports pro-
vide a powerful examination means to detect structures and properties of the data.

11. Technical/physical constructs.
There can be some correlation between logical constructs and their technical implemen-
tation. For instance, a foreign key is often supported by an index. Therefore, an index
can be an evidence that a field could be a foreign key. This source of information as well
as the next one can be exploited through schema analysis techniques.

12. Names.
Most programmers try to give programming objects meaningful names. Their interpreta-
tion can bring some hints about the meaning of the objects, or about their purpose. In
addition, this analysis can detect synonyms (several names for the same object) and hom-
onyms (same name for different objects). Fields called Total_Amount, Rebate,
Shipment_cost or Average_Salary could be derived fields since they suggest values that
usually are computed or extracted from reference tables. Program slicing will be the pre-
ferred technique to confirm the hypothesis.
Names can also include important meta-data, such as structural properties (field names
Add-City-Name, Add-City-Zipcode suggest a 3-level hierarchy), data type (Integer-
Level), unit (Volume-Tons), language (Title-engl, Title-germ).

Some program analysis techniques
Many program analysis techniques have been developed in the softwre engineering domain,
e.g., to support program maintenance. Several of these techniques are quite relevant for un-
derstanding data structures as well. Here are some of them.
1. Dataflow analysis.

Examining in which variables data values flow in the program can put in light structural
or intentional similarities between these variables. For instance, if variable B, with struc-
ture Sb receives its values from variable A, with structure Sa, and if Sb is more precise
than Sa, then A can be given structure Sb. The term flow must be taken in a broad sense:
if two variables belong to the same graph fragment, at some time, and in some deter-
mined circumstances, their values can be the same, or one of them can be a direct func-
tion of the other. The following table presents some common generating statements:

5.3 The Refinement process: information sources and elicitation techniques 5-9

20/5/2002  J-L Hainaut 2002

More sophisticated, or less strict relations can be used, such as "if A > B then ..." and "C
= A + B". Such patterns do not define equality of values between A and B, but rather a
certain kind of similarity. This dependency could be A and B have compatible value
domains, as considered in problems such as Year 2000 or Dow-Jones 10000.

2. Dependency analysis.
A dependency graph is a generalization of dataflow graphs. It includes a larger variety
of inter-variable relations, such as in the following example, where the value of C proce-
durally depends on the value of A.
:

3. Programming cliché analysis.
Disciplined programmers carefully use similar standard patterns to solve similar prob-
lems. Therefore, once the pattern for a definite problem has been identified, searching
the application programs or other kind of procedural fragments for instances of this pat-
tern allows us to locate where problems of this kind are solved [Signore 1994b], [Petit
1994] [Henrard 1998]. For instance, let us consider a complex relational database that
includes several thousands of triggers, and whose SQL definition script is, say, more
than 3,000 page long. Now, we suppose that we have found that validating a certain kind
of integrity constraint IC is carried out through a trigger that requires the size of a query
result set to be less than a certain number. Finding all the instances of this validation pat-
tern, and thus finding strong evidences of instances of IC, can be quickly done by search-
ing the database definition script for instances of the pattern of Figure 5-4, or fragments
of it. Actual data names have been replaced with pattern variable names (prefixed with
@).

4. Program slicing.
This very powerful technique provides extracts from a large program according to defi-

statement dataflow graph

move A to B;

D := A*B + sqrt(C)

if A = B then ...

proc P(in X:int; out Y:char);
P(A,B);

A → B
A → D B → D C → D

A  B
A → X Y → B

statements dependency graph

if A = 1 then
 C := D;
endif;

A → C D → C

5-10 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

nite criteria [Weiser 1984]. Considering program P, object O of P (e.g., a variable or a
record) and a point S in P (e.g., a statement), the program slice Π[P,O,S] of P according
to criterion <O,S> is the ordered set of all statements of P that can contribute to the state
of O at point S. In other words, executing P and executing Π give O the same state what-
ever the external condition of the executions.
This technique allows the analysts to reduce the search space when they look for definite
information into large programs. Let us consider an example. The most frequent pro-
gramming pattern used to record data in a database consists in (1) collecting the data, (2)
validating the data and (3) writing the data in the database. Examining the validation
section should give us essential information on the implicit integrity constraints applica-
ble on the data. Unfortunately, these statements often does not appear as a contiguous
code section, but rather are scattered throughout the program, or even in several pro-
grams. Locating the point(s) S where the data are recorded (as record type R) in program
P is fairly easy (it is a simple programming cliché such as "write R" or "rewrite R"
in COBOL). Computing the slice Π[P,R,S] for each point S provides us with a (hope-
fully) very small subset of P which can be searched for traces of data validation state-
ments. Some examples will be proposed in the case study in Chapter 9.

Figure 5-4: A complex text pattern describing a large class of SQL triggers.

About the decision process
The information sources presented above can be used in several ways that define different
strategies to apply according to the structure of the problem. Many elicitation processes obey
the following pattern.
First, an evidence, obtained by applying an elicitation technique, triggers a question or a sug-
gestion, that will be called a hypothesis (e.g,. is field F a foreign key?). If this hypothesis
seems valuable, the analyst tries to complete it by using other techniques in such a way that

create or replace trigger @TRIG
before insert or update of @COLUMN on @TABLE
for each row
declare
 @EXEPT exception;
 @COUNTER number;
begin
 select count(*) into @COUNTER
 from @TABLE
 where @COLUMN1 = :NEW.@COLUMN2;
 if (@COUNTER >= @VAL)
 then
 raise @EXEPT;
 end if;
end;

5.4 The Refinement process: representative problems 5-11

20/5/2002  J-L Hainaut 2002

(s)he can formulate a complete hypothesis (e.g., is field F a foreign key to record type R).
Then, the analyst will try either to prove the validity of the hypothesis, using hypothesis prov-
ing techniques, or to prove that it is false, through hypothesis disproving techniques. In short,
for each kind of implicit construct, we can classify the elicitation techniques into:

1. hypothesis triggering techniques, that put in light a possible implicit construct;
2. hypothesis completion techniques, that help formulate the complete hypothesis;

3. hypothesis proving techniques, that tend to increase the confidence in the hypothesis;
4. hypothesis disproving techniques that tend to decrease the confidence in the hypothesis.

The final word is up to the analyst, who has to close the analysis process, and to decide, ac-
cording to the set of evidences (s)he has collected so far, whether the hypothesis is converted
into a construct or it is refuted. An important consequence of this discussion is that implicit
constructs elicitation basically is a decision process, and cannot be a formal, deterministic,
process, except in simplistic or well structured applications.

5.4 The Refinement process: representative problems

The variety of implicit constructs can be fairly large, even in small projects, and studying the
application of the techniques described above to each of them would deserve a full book of
impressive size. The space limit of this chapter suggests just to mention the main implicit
structures and constraints that can be found in actual reverse engineering projects of various
size and nature. Then, we study one of them, namely implicit foreign keys, in further detail
to illustrate the proposed methodology. It is important to keep in mind that this analysis is
DMS-independent. Indeed, almost all the patterns that will be discussed have been found in
practically all types of databases.
1. Finding the fine-grained structure of record types and fields.

A field, or a full record type, declared as atomic, has an implicit decomposition, or is the
concatenation of contiguous independent fields. The problem is to recover the exact
structure of this field or of this record type. This pattern is very common in standard file
and IMS databases, but it has been found in modern databases as well, for instance in
relational tables.

2. Finding optional (nullable) fields.
Most DMS postulate that each field of each record has a value. In general, giving a field
no value consists in giving it a special value, to be interpreted as missing or unknown
value. Since there is no standard for this trick, it must be discovered through, among
others, program and data analysis.

3. Finding field aggregates.
A sequence of seemingly independent fields (ADD-NUMBER, ADD-STREET, ADD-
CITY) are originated from a source compound field (ADDRESS) which was decom-

5-12 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

posed. The problem is to rebuild this source compound field. This is a typical situation
in relational, RPG, IMS and TOTAL/IMAGE databases that impose flat structures.

4. Finding multivalued fields.
A field, declared as single-valued, appears as the concatenation of the values of a multi-
valued field. The problem is to detect the repeating structure, and to make the multival-
ued field explicit. Relational, RPG, IMS and TOTAL/IMAGE databases commonly
include such constructs.

5. Finding multiple field and record structures .
The same field, or record structure, can be used as a mere container for various kinds of
value. For instance, a CONTACT record type appears to contain records of two different
types, namely CUSTOMER and SUPPLIER.

6. Finding record identifiers.
The identifier (or unique key) of a record type is not always declared. Such is the case
for sequential files or CODASYL set types for example.

7. Finding identifiers of multivalued fields.
Structured record types often include complex multivalued compound fields. Quite
often too, these values have an implicit identifier. For instance, in each CUSTOMER
record, there are no two PURCHASE compound values with the same PRODUCT value.

8. Finding foreign keys.
In multi-file applications, there can be inter-file links, represented by foreign keys, i.e.,
by fields whose values identify records in another file.

9. Finding sets behind arrays ...
Multivalued fields are generally declared as arrays, because the latter is the only con-
struct available in host languages and DMS to store repeating values. Unfortunately, an
array is a much more complex construct than a set. Indeed, while a set is made up of an
unordered collection of distinct values, an array is a storage arrangement of partially
filled, indexed, cells which can accommodate non distinct values. In short, an array basi-
cally represents ordered collections of non distinct values with possible holes (empty
cells). For each array, one must answer three questions: are the values distincts? is the
order significant? what do holes mean? Clearly, usage pattern and data analysis are the
key techniques to get the answers.

10. Finding functional dependencies.
As commonly recognized in the relational database domain, normalization is a recom-
mended property. However, many actual databases include unnormalized structures,
generally to get better performance.

11. Finding existence constraints.
Sets of fields and/or roles can be found to be coexistent, that is, for each record, they all
have a value or all are null. There are other similar constraints, such as exclusive (at
most one field is not null) and at least one (at least one field is not null). These con-

5.4 The Refinement process: representative problems 5-13

20/5/2002  J-L Hainaut 2002

straints can be the only trace of embedded fields aggregates or of subtype implementa-
tion (see Figure 2-7).

12. Finding exact minimum cardinality of fields and relationship types.
Multivalued fields declared as arrays, have a maximum size specified by an integer,
while the minimum size is not mentioned, and is under the responsibility of the program-
mer. For instance, field DETAIL has been declared as "occurs 20", and its cardinality has
been interpreted as [20-20]. Further analysis has shown that this cardinality actually is
[1-20].

13. Finding exact maximum cardinality of fields and relationship types.
The maximum cardinality can be limited to a specific constant due to implementation
constraints. Further analysis can show that this limit is artificial, and represents no
intrinsic property of the problem. For instance, an attribute cardinality of [0-100] has
been proved to be implementation-dependent, and therefore relaxed to [0-N], where N
means unlimited.

14. Finding redundancies.
Very often, actual databases include redundancies that are to improve performance. It is
essential to detect and express them in order to normalize the schema in further reverse
engineering steps.

15. Finding enumerated value domains.
Many fields must draw their values from a limited set of predefined values. It is essen-
tial to discover this set.

16. Finding constraints on value domains.
In most DBMS, declared data structures are very poor as far as their value domain is
concerned. Quite often, though, strong restriction is enforced on the allowed values.

17. Finding meaningful names.
Some programming discipline, or technical constraints, impose the usage of meaningless
names, or of very condensed names whose meaning is unclear. On the contrary, some
applications have been developed with no discipline at all, leading to poor and contradic-
tory naming conventions.

Devising a general algorithm organizing the search for these implicit constructs would be an
unrealistic attempt. However, we can, without excessive risk, propose a logical hierarchy of
goals that should fit most DS Extraction projects. It will be specialized for some DMS in
Chapter 7

5-14 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

5.5 The Refinement process: application to foreign
key elicitation

The problem
The foreign key is a field (or combination thereof) each value of which is used to reference a
record in another (or in the same) file. This construct is a major building block in relational
databases, but it has been found in practically all kinds of databases, such as IMS and CO-
DASYL databases, where it is used to avoid the burden of explicit relationships, or to com-
pensate the weaknesses of the DBMS. For instance, IMS imposes strong constraints on the
number and on the pattern of relationships, while CODASYL DBMSs prohibit cyclic set
types. Foreign keys have also been used to ease partitioning CODASYL databases into
chunks that need not be on-line simultaneously.

The standard configuration of foreign key can be symbolized by: B.B2 >> A.A1, where B2 is
a single-valued field (or set of fields) of record type B and A1 is the primary identifier of
record type A. B.B2 and A.A1 are defined on the same domain. However, practical foreign
keys do not always obey the strict recommendations of the relational theory, and richer pat-
terns can be found in actual applications. For instance, we have found a large variety of non
standard foreign keys:
• multivalued foreign keys: each value of a repeating field is, or includes, a referencing

value,
• secondary foreign keys: foreign keys that reference secondary identifiers instead of pri-

mary ones; these secondary identifiers may even be optional,
• loosely-matching foreign keys: the type and length of the foreign key can be different of

that of the referenced identifier; for instance, a foreign key of type char(10) can reference
an identifier of type char(12), and type numeric(6) can be found to match char(6); in
addition the structure can be different: an atomic foreign key can be matched with a com-
pound identifier;

• alternate foreign keys: that reference a record of type A, or of type B, or of type C,
• multi-target foreign keys: that reference a record of type A, and one of type B, and

another one of type C,

1. Refine the record type and field structures (goal 1). Similarly, find the optional fields
(goal 2), the field aggregates (3), the multivalued fields (4) and the multiple field and
record structures (goal 5)

2. Find records identifiers (goal 6). Similarly, find the identifiers of multivalued fields
(goal 7)

3. Find foreign keys (goal 8).
4. Find other constraints (goals 9 to 17)

5.5 The Refinement process: application to foreign key elicitation 5-15

20/5/2002  J-L Hainaut 2002

• conditional foreign keys: that reference a target record only if a condition is met; if the
other cases, the value of the "foreign key" is given another interpretation,

• overlapping foreign keys: two foreign keys share a common field (e.g. {X,Y} and
{Y,Z}),

• embedded foreign keys: a foreign key includes another foreign key (e.g. {X,Y} and {Y}),
• transitive foreign keys: a foreign key is the combination of two foreigns keys (e.g., C.C3

>> B.B1; B.B2 >> A.A1; C.C3 >> A.A1, where A1 is an identifier of A and B1 an identi-
fier of B).

Let us base the discussion on the schema of Figure 5-5, in which two record types (or tables,
or segment types) CUSTOMER and ORDER may be linked by a foreign key. We assume
that CID is the identifier of CUSTOMER, and that, should a foreign key exist in ORDER, it
would reference this identifier (in short, we do not have to elicit the target identifier).

Figure 5-5: Foreign key elicitation - The source and final schemas.

We will examine in which way each of the information sources, techniques and heuristics de-
scribed in Section 5.3 can be used to elicit foreign key O-CUST, that is, to collect hints and
evidences contributing to prove, or disprove that field O-CUST is a foreign key to record type
CUSTOMER. Afterwards, we propose a tentative strategy to find implicit foreign keys in
relational databases. Its extension to other DMS is quite straightforward.
Though we will discuss the problem of proving that a definite field is a foreign key, it must
be noted that this problem may appear in several variants which can be solved by generalizing
the techniques that will be examined below. For instance, we could try to find

• all the record types referenced by foreign key O-CUST,
• all the foreign keys in record type ORDER,
• all the foreign keys that reference CUSTOMER.

Dataflow analysis
If a foreign key holds between two record types, then we should find, in some programs, data
values flowing between variables that represent the foreign key and the target identifier. Con-
sidering equality relations only extracted from the program of Figure 5-6, we compute the
equality dataflow graph of Figure 5-7.

⇒
ORDER

O-ID: num (6)
O-DATE: date (8)
O-CUST: num (5)
id: O-ID

acc
acc: O-CUST

CUSTOMER
CID: num (5)
NAME: char (22)
ADDRESS: char (32)
id: CID

acc

ORDER
O-ID
O-DATE
O-CUST
id: O-ID
ref: O-CUST

CUSTOMER
CID
NAME
ADDRESS
id: CID

5-16 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

Figure 5-6: Excerpts from a program working on CUSTOMER and ORDER (the meaning of this
code is irrelevant).

It shows that, at given time points, CUSTOMER.CID and ORDER.O-CUST share the same
value. It is reasonable to think that the same property holds in the files themselves, hence the
suggestion that field O-CUST could be a foreign key.

Figure 5-7: Fragment of the equality dataflow graph of the program of Figure 5-6.

Usage pattern analysis
While the dataflow graph only provides us with an abstraction of the relationships between
fields, we could be interested by the real thing, i.e., by the procedure that processes records
and fields. Let us consider the excerpt of the program of Figure 5-6 that is presented in Figure
5-8(a). A simpler but equivalent version is proposed in (b). The latter exhibits a common
cliché of file processing programs: reading a record (CUSTOMER) identified by a field value
(O-CUST) from another record (ORDER). This is a typical way of navigating from record
to record, that is called procedural join, by analogy with the relational join of SQL-based
DBMS. The probability of O-CUST being a foreign key to CUSTOMER is fairly high.

 DATA DIVISION.
 FILE SECTION.
 FD F-CUSTOMER.
 01 CUSTOMER.
 02 CID pic 9(5).
 02 NAME pic X(22).
 02 ADDRESS pic X(32).
 FD F-ORDER.
 01 ORDER.
 02 O-ID pic 9(6).
 02 O-DATE pic 9(8).
 02 O-CUST pic 9(5).

 WORKING-STORAGE SECTION.
 01 C pic 9(5).

PROCEDURE DIVISION.
 ...
 display "Enter order number "
 with no advancing.
 accept CID.
 move 0 to IND.
 call "SET-FILE" using C, IND.
 read F-ORDER
 invalid key go to ERROR-1.
 ...
 if IND > 0 then
 move O-CUST of ORDER to C.
 ...
 if C = CID of CUSTOMER then
 read F-CUSTOMER
 invalid key go to ERROR-2.
 ...

CUSTOMER.CID C

ORDER.O-CUST

5.5 The Refinement process: application to foreign key elicitation 5-17

20/5/2002  J-L Hainaut 2002

Figure 5-8: (a) excerpts from the program of Figure 5-6. (b) a simplified equivalent version.

Let us consider the following elementary example of foreign key (Figure 5-9).

Figure 5-9: An elementary abstract schema including a foreign key.

The main processing patterns that use the instances of this schema are summarized in Figure
5-10. Both procedural (pseudo-code) and predicative (SQL) versions are given.

read F-ORDER.
move O-CUST of ORDER to C.
if C = CID of CUSTOMER then
 read F-CUSTOMER
 invalid key go to ERROR-2.

read F-ORDER.
move O-CUST of ORDER
 to CID of CUSTOMER.
read F-CUSTOMER
 invalid key go to ERROR-2.

(a) (b)

Function Procedural pattern

Find the A of a given B read A(A1=B.B2);
if not found then error end-if;

Find the Bs of a given A read-first B(B2=A.A1);
while found do
 process B;
 read-next B(B2=A.A1)
end-while;

Create a B record read A(A1=B.B2);
if found then create B end-if;

Delete an A record (cascade mode) read-first B(B2=A.A1);
while found do
 delete B;
 read-next B(B2=A.A1)
end-while;
delete A;

Delete an A record (no action mode) read-first B(B2=A.A1);
is not found do
 delete A;
end-do;

 A
A1
A2
id: A1

 B
B1
B2
ref: B2

5-18 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

Figure 5-10: The main processing patterns related to foreign keys.

Applied on the example of Figure 5-5, some of these patterns could instantiate into the fol-
lowing code sections:

As we can expect, Figure 5-10 gives some popular expressions of the standard processing
functions only. Many other variants exist. For instance, SQL offers several ways to code ref-
erential integrity implicitly: through check predicates, through SQL triggers, through dialog
procedures (e.g., ORACLE SQL-Forms), through stored procedures or through views with
check option. In addition, each technique allows the developer to express the constraint val-
idation in his/her own way. Several authors have proposed heuristics to detect foreign keys
by usage pattern analysis [Andersson 1994] [Petit 1994] [Signore 1994].

Screen/forms/report layout
Screen forms are used to present data and/or to let users enter them. Frequently, one screen
panel includes data from several record types. Typically, an order-entry panel will comprise
fields whose contents will be dispatched to ORDER, CUSTOMER, DETAIL and PRODUCT

Function SQL-like expressions

Find the A of a given B 1)select * from A where A1 in
(select B2 from B where ...)
2)select A1,A2 from A,B where
A.A1=B.B2

Find the Bs of a given A 1)select * from B where B2 in
(select A1 from A where ...)
2)select B1,B2 from A,B where
A.A1=B.B2

Create a B record if exists (select * from A where
A1=B.B2)
then insert into B values (...)

Delete an A record (cascade mode) delete from B where B2 in (select A1
from A where ...)
delete A where ...

Delete an A record (no action mode) if (not exists (select * from B
where B2 in (select A1 from A where
...))) then delete A where ...
end-if;

SQL query CODASYL DML query
select CID, NAME, O-DATE
from CUSTOMER, ORDER
where CID = O-CUST

move O-CUST of ORDER to CID of CUS-
TOMER.
read CUSTOMER record.

5.5 The Refinement process: application to foreign key elicitation 5-19

20/5/2002  J-L Hainaut 2002

records. Three kinds of information can be derived from the examination of such forms:
• Spatial relationships between data fields. The way the data are located on the screen

may suggest implicit relationships.
• Labels and comments included in the panel. They bring information on the meaning, the

role and the constraints of each screen field.
• Discarded fields. If data field O-CUST does not appear on the screen, then its value may

appear elsewhere, for instance in screen firld CUST-ID, which has the same type. This
may mean that this field designates an information that is given by the context, for
instance about the customer of the order.

A screen layout can be examined as a standalone component, as suggested above. It can also
be analyzed as source/target data structures of the programs that use it to communicate with
their environment. Figure 5-11 shows how screen data are distributed in the data files. An
implicit join based on CUSTOMER.CID = ORDER.O-CUST is clearly suggested. Including
screen fields in the dataflow graph is another way to make these links explicit
Data reports can be considered both as data structures and as populated views of the persistent
data. The first aspect is quite similar to that of screen layout: a report is a hierarchical data
structure that makes relationships between data explicit. The second one relates to the data
analysis heuristics.

Figure 5-11: Detecting a foreign key in a screen panel.

Current documentation
When it still exists, and when it can be relied on, the documentation is the first information
source to use. Normally, file structures, field description, and particularly their roles (such as
referencing) should be documented. Some weaker, but probably more up-to-date, informa-
tion could be found in the system data dictionary. Indeed, most RDBMS allow administrators
to add a short comment to each schema object. The programs themselves should include,
through comments, information on critical components, such as data structures or validation
procedures.

Fields of the screen panel
CUST-ID
CUST-NAME
CUST-ADDRESS
ORD-ID
CURRENT-DATE
DETAIL[0-N]

PRO-ID
QTY

ORDER file
O-ID
O-DATE
O-CUST

CUSTOMER file
CID
NAME
ADDRESS

5-20 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

Domain knowledge
Everybody knows that customers place orders. Obviously, record types CUSTOMER and
ORDER should be linked in some way. The question is: how ?

Data analysis
If O-CUST is a foreign key to CUSTOMER, then referential integrity should be satisfied, and
each of its values must identify a CUSTOMER record. A small program, or the following
SQL query (provided the record types are stored into tables) will check this condition by com-
puting the number of violations:

 select count(*)
 from ORDER
 where O-CUST not in (select CID from CUSTOMER)

However the result n returned by this query must be interpreted with much caution, because
several conclusions can be drawn from it, depending, among others, on the size of the data
sample which was analyzed.

Some authors [Petit 1994] have pushed further the analysis of data inclusion properties.

Program execution
The principle is to analyze the reactions of the program to selected stimuli, for instance in
terms of acceptance and rejection of input data and update queries. If the program rejects any
tentative data entry concerning an order unless its O-CUST value appears as the CID value
of some CUSTOMER record, then we can conclude that the program enforces some kind of
inclusion property between these value sets, which can be interpreted as referential integrity.
Similarly, if the program refuses to delete a CUSTOMER record because the customer still
has pending orders, we can translate this behaviour into the fact that ORDER records depend
on this CUSTOMER record.

A running program also populates the screen panels, just like printed reports. New relation-

outcome interpretation

n = 0 1. O-CUST is a FK,
2. statistical accident; tomorrow, the result may be different; O-

CUST is not a FK

0 < n < ε 1. O-CUST is not a FK,
2. O-CUST is a FK, but the query detected data errors,
3. O-CUST is a conditional FK.

0 << n 1. O-CUST is not a FK,
2. O-CUST is a conditional FK.

5.5 The Refinement process: application to foreign key elicitation 5-21

20/5/2002  J-L Hainaut 2002

ships can be detected in this way.

Physical structure
A foreign key is a mechanism that implements links between records, and is the privileged
way to represent inter-entity relationships. We can assume with little risk that application
programs will navigate among records following these relationships. Therefore, most foreign
keys will be supported by such access mechanisms as indexes. Heuristics: a field supported
by an index could be a foreign key, specially when it is not an identifier (most foreign keys
implement one-to-many links).

Quite naturally, the candidate field should have the same domain of values, i.e., the same
type and length, as the identifier of the referenced record type. However, some matching dis-
torsions can be found as far as lengths and even types are concerned. Heuristics: the candi-
date foreign key must match, strictly or loosely, an identifier of the candidate referenced
record type.
In some RDBMS (e.g. ORACLE), clustering mechanisms are proposed to group in the same
pages records that have some kind of logical relationships. Joins based on primary-key/for-
eign-keys are the most common logical relationship. Heuristics: if a physical cluster gathers
the records of table A through column A1 and of table B through column B1, and if A1 is an
identifier of A, then B1 could be a foreign key referencing A.

In DMS where records can be read in sorted sequence, such as in standard file organizations,
sorted sets in CODASYL DBMS or in RDBMS (through order by clause), it is common prac-
tice to interleave records of different types in such a way that they are read in a hierarchical
arrangement. Figure 5-12 represents in an abstract way a file comprising ORDER and DE-
TAIL records, sorted on common field ID. Field ID is a global identifier for records of both
types. The identifiers (ID) of both types have the same format, and are made of two compo-
nents. The second component of all ORDER records contains constant value zero, while it is
strictly positive in DETAIL records. In this way, each ORDER record is followed by a se-
quence of DETAIL records that share the same O-ID value. Obviously, DETAIL.ID.O-ID is
a foreign key to ORDER, while the filler field bears no semantics, and can be ignored. Heu-
ristics: in structures such as that described above, the first component of the second record
type can be a foreign key to the first record type; in addition, the second component of the
first record type can be discarded.

Name analysis
Quite often, the name of a foreign key suggests its function and/or its target. The names can
be less informative for multi-component foreign keys. Sometimes, a common prefix may
give useful hints. In our example, the name O-CUST includes a significant part of the name
of the target record type.
The following rules are among the most common encountered in practice:

• the name suggests the referencing function: CUST-REF

5-22 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

• the name suggests the referenced record type: CUSTOMER, CUST
• the name suggests the role of the referenced record type: PLACED-BY,

OWNER.
• the name suggests the referenced identifier: CID, CUST-ID, C-CODE

Figure 5-12: Hierarchically sequenced records.

Tentative strategy for foreign key elicitation
Trying to build a general strategy for foreign key elicitation that would be valid in any cir-
cumstance would be unrealistic. Indeed, database reverse engineering basically is a loosely
structured learning process which varies largely from one project to another. Nevertheless
we can sketch the following principles, based on the schema of Figure 5-9, that can apply on
relational databases managed by early RDBMS, in which no keys were explicitly declared.

Phase Heuristics Short description

Hypothesis
Triggering

name analysis

domain knowledge

Name of column B.B2 suggests a table, or an
external id, or includes keywords such as ref, ...
Objects described by B are known to have some
relation with those described by A

Hypothesis
Comple-

tion

name analysis
domain knowledge

technical constructs

Select table A based on the name of B2
Find a table describing objects which are known to
have some relation with those described by B
Search the schema for a candidate referenced
table and id (with same type and length)

Hypothesis B.B2 >> A.A1 field B2 of B is a foreign key to identifier A1 of A

ORDER
ID

O-ID: num(6)
filler: num(5) (=0)

O-DATE
O-CUST
id: ID

DETAIL
ID

O-ID: num(6)
P-ID: num(5) (> 0)

QTY
id: ID

FILE (sorted by asc. ID)

5.5 The Refinement process: application to foreign key elicitation 5-23

20/5/2002  J-L Hainaut 2002

Hypothesis
Proving

technical constructs
technical constructs
dataflow analysis
usage pattern

usage pattern
usage pattern
usage pattern

usage pattern
usage pattern

There is an index on B2
B.2 and A.A1 are in the same cluster
B.2 and A.A1 are in the same dataflow graph frag-
ment
A.A1 values are used to select B rows with same
B2 values
B.2 values are used to select A row with same A1
value
A B row is stored only if there is a matching A row
When an A row is deleted, B rows with B2 values
equal to A.A1 are deleted as well
There are views based on a join with B.B2 = A.A1
There is a view with check option selecting Bs
which match A rows

Hypothesis
Disproving

data analysis Prove that some B.B2 values are not in A.A1 value
set

5-24 5 • The data structure extraction process

 J-L Hainaut 2002 20/5/2002

18/5/2002

Chapter 6

The data structure conceptualization

process

Abstract

DBRE generally is not a linear process. Indeed, trying to interpret logical constructs can sug-
gest new hypotheses that will require the application of elicitation techniques on the opera-
tional code or on other sources. So, DBRE really requires a spiral-like approach in which DS
Extraction and DS Conceptualization can be interleaved. For the sake of simplicity, however,
we will suppose that we are provided with a logical schema that includes all the constructs
that can be elicited from the available sources, and that we will no longer need to go back to
DS Extraction activities.
As explained in Section 4.4, the goal of this phase is to extract from the complete logical sche-
ma an equivalent normalized conceptual schema. As a side effect, we will often discover
dead data structures and technical data structures that will be discarded, as well as schema
errors that will be fixed.

Since it has been modeled as the reverse of the forward Logical Design phase, the Conceptu-
alization phase will be based on transformational techniques as well. We distinguish two ma-
jor phases, namely Basic Conceptualization and Conceptual Normalization, that will be
described in some detail. The first one is specific to DBRE while the second one is quite sim-
ilar to the normalization process of the forward Conceptual analysis phase (Figure 3-2). The
preliminary phase called Preparation has been briefly described in Section 4.4 and will ig-
nored in the following.

6-2 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

6.1 Basic conceptualization

This process concentrates on extracting a first cut conceptual schema without worrying about
aesthetical aspects of the result. Though distinguishing between them may be arbitrary in
some situations (some transformations pertain to both), two kinds of reasonings have been
identified, namely untranslation and de-optimization.

The reader will probably be surprised that the processing of some popular constructs will gen-
erally be ignored in this section. Such is the case for many-to-many relationship types, N-ary
(N > 2) relationship types, attribute entity-types (described later on) and IS-A hierarchies, that
are generally considered in most proposals. In fact these problems have been discarded, ex-
cept when they appear naturally, since they are common to all DMS and there is no general
agreement on whether they must be recovered or not. Therefore they will be addressed in the
Conceptual Normalization process. As an example, most DBRE algorithms1 automatically
interpret an identifying foreign key, that is, a unique key that also is a foreign key, as the trace
of an subtype/super-type relation. We prefer to transform it as a mere one-to-one relationship
type, which in turn will be interpreted, in the Normalization phase, either as a pure one-to-
one relationship type, or as entity type fragmentation or as a subtype/super-type relation.

6.2 Schema Untranslation

At first glance, this process seems to be the most dependent on the DMS model. Indeed a
relational schema, a CODASYL schema and a standard file schema, though they express the
same conceptual schema, are made up of quite different data structures. They have been pro-
duced through different transformation plans (see Figure 3-3 for instance) and therefore
should require different reverse untranslation rules as well. However, it can be shown that
these forward plans use a limited set of common primitive transformations. For instance, the
six operators of Figure 2-5 are sufficient to build the major part of the transformation plan of
the most popular DMS, and augmenting this toolset with the transformations of Figure 2-6
provides a very rich basis for building optimized schemas. A set of about thirty elementary
operators (see Chapter 8) has proved sufficient to define Logical design strategies for all past
and current DMS, from COBOL standard file systems to OO-DBMS. Since reverse engineer-
ing basically is the inverse of forward engineering, a toolbox comprising the inverse of these
forward transformations would count no more than one or two dozens of operators.
In fact, in order to make the presentation more attractive, though inevitably redundant, we
will discuss untranslation transformations in Chapter 7, devoted to DMS-specific methodol-
ogies. However, we will briefly describe five general techniques that will be useful for all the
most popular DMS.

1. This presentation should convice the reader that there cannot exist such algorithms, but in simplis-
tic situations. Indeed, DBRE is a highly non-deterministic, decision-based process.

6.2 Schema Untranslation 6-3

18/5/2002  J-L Hainaut 2002

Figure 6-1: Homogeneous serial fields transformed into a multivalued attribute.

Homogeneous serial fields
A group of serial fields is made of a sequence of fields (or attributes, according to the abstrac-
tion level of the schema) which present some kind of similarities that is worth being made
explicit. Generally, their names suggest some common origin. Homogeneous serial fields
have the same structure, while their names often includes a common part and a discriminant
part. This latter part frequently appears as a set of values belonging to an implicit dimension
of the application domain such as months, semesters, years, regions, department, or even
mere integers. The untranslation consists in applying a variant of the Serial-MultAtt trans-
formation (Figure 6-1) that is more complex but semantics-preserving. The serial fields form
an array, which explains the more complex final schema.

Heterogeneous serial fields
Heterogeneous serial fields may have different structures and their names also are made of
two parts. However, the discriminant part suggests entity property names. These fields may
also form a coexistent group. The suggested untranslation is through the application of the
Aggreg transformation (Figure 6-2). In some low level languages, such as BASIC in its ear-
lier variants, a program can use a very small number of variables, due to the strong constraints
on variable names (1 letter + 1 optional digit). Consequently, programmers used arrays to
store records, that is, a list of heterogeneous fields.

⇔

dom(Phone1) = dom(Phone2) =
dom(Phone3) = dom(Phone4) = D

SUPPLIER
SupID
Name
Phone1[0-1]
Phone2[0-1]
Phone3[0-1]
Phone4[0-1]
id: SupID

dom(Phone[*].Index) = [1..4]
dom(Value) = D

SUPPLIER
SupID
Name
Phone[0-4]

Index
Value[0-1]

id: SupID
id(Phone):

Index

6-4 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

Figure 6-2: Heterogeneous serial fields.

Multivalued compound field
This decomposition technique addresses a pattern that will frequently be found in standard
files, but also in any other kind of database, particularly those which do not offer a direct rep-
resentation of one-to-many relationship type (Figure 6-3). This technique consists in inte-
grating a dependent record type into its master record type as a compound, multivalued field.
In this way, it is possible to represent record hierarchies into a single record. Note that this
transformation will also be relevant in the De-optimization and Normalization phases.

Figure 6-3: Extracting a complex multivalued field as an autonomous entity type.

Hierarchically sequenced records
Some sequences of records or of multivalued attribute values result from the dynastic travers-
al2 of an implicit tree. Since all DMS, from sequential files to RDBMS, offer ways to define
sequences of records, this pattern can be found in any database. Such a sequence will be re-
placed with its hierarchical origin (Figure 6-4).

⇔

⇔

2. I.e., depth-first.

CUSTOMER
CustID
Name
Add_Number
Add_Street
Add_City
id: CustID

CUSTOMER
CustID
Name
Address

Number
Street
City

id: CustID

ORDER
OrdNum
Date
Detail[1-20]

ItemCode
Qty

id: OrdNum
id(Detail):

ItemCode

1-11-20 of

ORDER
OrdNum
Date
id: OrdNum

DETAIL
ItemCode
Qty
id: of.ORDER

ItemCode

6.2 Schema Untranslation 6-5

18/5/2002  J-L Hainaut 2002

Figure 6-4: A record hierarchy implemented as a record sequence. In the left-side schema, a se-
quence of interleaved ORDER and INVOICE records depend on each CUSTOMER record. This
interleaving structure implements an ORDER-INVOICE hierarchy.

The main problem is to discover how the parent/child relationship is implemented: through a
level number, by a node type change, by a specific field value, by a foreign key to the parent
node (Figure 5-12), by explicit next/prior pointers, etc. This structure was frequently used in
simple file structures and was the basic storage structure of the first versions of IBM’s IMS.
However, some SQL acrobatic graph coding schemes of the same flavour can be found in re-
cent reference [Celko 1995]. Obviously, reverse engineering such patterns also is for smart-
ies!

Foreign keys
The foreign key is the main inter-entity structuring construct in all the relational or standard
file schemas. Surprisingly, it has been found in many schemas implemented in network, shal-
low, hierarchical, and even OO models. Hence the importance of recovering all the foreign
keys in the DS Extraction phase.
The standard foreign key (Figure 6-5) is a group of one or several fields that match the pri-
mary identifier of another (or of the same) record type. Its preferred interpretation is as a
many-to-one relationship type (i.e., transformation FK-RT). Variants according to whether
the foreign key is optional/mandatory, single/multi-component, identifying or not, single/
multi-valued, referencing a primary/candidate identifier, will easily be derived from this stan-
dard pattern.

Figure 6-5: Untranslating the standard foreign key.

Unfortunately this transformation does not apply for some non standard patterns. We will ex-

⇔

⇔

1-1

0-N

for

ORDER INVOICE

CUSTOMER

1-10-N from

0-N

1-1

for

ORDER INVOICE

CUSTOMER

ORDER
OrdNum
Data
Origin
id: OrdNum
ref: Origin

CUSTOMER
CustID
Name
Address
id: CustID

1-10-N origin

ORDER
OrdNum
Data
id: OrdNum

CUSTOMER
CustID
Name
Address
id: CustID

6-6 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

amine some of them and propose a conceptual interpretation3.

Figure 6-6: Non standard foreign key - Hierarchical foreign key.

• Hierarchical foreign key. Surprisingly, foreign keys are very frequent in hierarchical
and network database schemas, despite the fact that the DBMSs offer explicit constructs
to represent relationship types. If the target entity type has been given an absolute iden-
tifier comprising attributes only, these foreign keys are standard. However, if it is identi-
fied relatively to one of its parent entity types, the foreign key must reference entities
through their hierarchical identifiers (e.g. their concatenated key in IMS) (Figure 6-6).
These keys also appear in unfinished conceptual schemas originated in logical schemas
from other DMS.

• Partially reciprocal foreign keys. This pattern of interleaved foreign keys is a concise
and elegant way to represent a bijective (one-to-one) relationship set included into
another relationship set (Figure 6-7). When considering its ER equivalent, the source
relational schema appears much more concise and free from complex additional integrity
constraints. Unfortunately, the price to be paid for this conciseness is that its meaning is
far from intuitive.

3. The problem of non standard foreign keys is studied in detail in Chapter XXXXX.

⇒
1-1

0-N

in

SERVICE
ServName
Budget
id: in.DEPARTMENT

ServName

EXPENSE
ExpID
Date
Amount
DptName
ServName
id: ExpID
ref: DptName

ServName

DEPARTMENT
DptName
Location
id: DptName

0-N

1-1

in

1-1

0-N

by

SERVICE
ServName
Budget
id: in.DEPARTMENT

ServName

EXPENSE
ExpID
Date
Amount
id: ExpID

DEPARTMENT
DptName
Location
id: DptName

6.2 Schema Untranslation 6-7

18/5/2002  J-L Hainaut 2002

Figure 6-7: Non standard foreign key - Partially reciprocal foreign keys.

Figure 6-8: Non standard foreign key - Overlapping foreign keys.

• Overlapping foreign keys. Two foreign keys overlap if they share one or several col-
umns and if none is a subset of the other one (Figure 6-8). Obviously, we cannot trans-

⇒

⇒

COUNTRY
CountryName
Capital
Area
id: CountryName
ref: Capital

CountryName

CITY
CityName
Country
Population
id: CityName

Country
ref: Country

1-1

1-N

in
gr: COUNTRY

CITY

1-1

0-1

capital
inc: COUNTRY

CITY

COUNTRY
CountryName
Area
id: CountryName

CITY
CityName
Population
id: in.COUNTRY

CityName

LINE-of-ORDER
OrderNumber
ItemCode
Qty
id: OrderNumber

ItemCode

LINE-of-INVOICE
OrderNumber
InvoiceNumber
LineNumber
ItemCode
Qty
Amount
id: OrderNumber

InvoiceNumber
LineNumber

ref: OrderNumber
InvoiceNumber

ref: OrderNumber
ItemCode

INVOICE
OrderNumber
InvoiceNumber
Date
Amount
id: OrderNumber

InvoiceNumber

LINE-of-INVOICE.from.INVOICE.for.ORDER
 =
LINE-of-INVOICE.for.LINE-OF-ORDER.from.ORDER

1-1

0-N

from

0-N

1-1

from 1-1

0-N

for

0-N

1-1

for

ORDER
OrderNumber
id: OrderNumber

LINE-of-ORDER
ItemCode
Qty
id: from.ORDER

ItemCode

LINE-of-INVOICE
LineNumber
Qty
Amount
id: from.INVOICE

LineNumber

INVOICE
InvoiceNumber
Date
Amount
id: for.ORDER

InvoiceNumber

6-8 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

form one key without destroying the other. The trick is to consider that the common key
components form the identifier of a hidden entity type.

• Partly optional foreign key. Some, but not all, components of a multiple-component for-
eign key are optional. First, we define a subtype for which the optional key component is
mandatory. All the components of the foreign key become mandatory, so that the latter
can be processed as usual (Figure 6-9).

Figure 6-9: Non standard foreign key - Partly optional foreign key.

Figure 6-10: Non standard foreign key - Embedded foreign key.

• Embedded foreign key. The pattern is as follows: the LHS of foreign key "C.C1 >>
A.A1" is a proper subset of the LHS of foreign key "C.{C1,C2} >> B.{B1,B2}". There
are several interpretations, but the most frequent one is that the first (embedded) key is

⇒

⇒

DISSERTATION
Title
Year
Advisor
id: Title

Year

 STUDENT
StudID
Name
Dissert[0-1]
Year
id: StudID
ref: Dissert

Year

LAST-YEAR-STUDENT.Year
 =
LAST-YEAR-STUDENT.writes.DISSERTATION.Year

1-1

0-N

writes

STUDENT
StudID
Name
Year
id: StudID

LAST-YEAR-STUDENT

DISSERTATION
Title
Year
Advisor
id: Title

Year

ORDER
Sender
OrdNum
Date
Amount
id: Sender

OrdNum

INVOICE
InvNum
Date
Amount
Customer
Order
id: InvNum
ref: Customer
ref: Customer

Order

CUSTOMER
CustID
Name
Address
id: CustID

0-N

1-1

from

0-N1-1 for

ORDER
OrdNum
Date
Amount
id: from.CUSTOMER

OrdNum

INVOICE
InvNum
Date
Amount
id: InvNum

CUSTOMER
CustID
Name
Address
id: CustID

6.3 Schema De-optimization 6-9

18/5/2002  J-L Hainaut 2002

the composition of the second one and of the still undiscovered foreign key "B.B1 >>
A.A1". We must first recover the latter, then remove the transitive foreign key. The
untranslation is now quite easy (Figure 6-10). Most frequently, this pattern results from
the incomplete elicitation of implicit foreign keys.

6.3 Schema De-optimization

Both Conceptual and Logical optimization processes will be considered as a whole, since
they make use of the same set of transformations, though possibly through different strate-
gies. Let us recall that we have to find traces of four major families of optimization tech-
niques based on schema transformations, namely discarding, structural redundancy,
unnormalization and restructuration. They must be precisely understood in order to reverse
their effect. In particular, some of them are more specifically fitted for some DMS than for
others.

Figure 6-11: Attribute ORDER.SalesMan has been recognized (in the DS extraction phase) as du-
plicate and relationship type from as the composition of of and in. They are removed.

Discarding constructs
This optimization resorts to the lost specification (∆) phenomenon, and should be addressed

⇔

ORDER.from.REGION =
ORDER.of.CUSTOMER.in.REGION

ORDER.SalesMan =
ORDER.of.CUSTOMER.in.REGION.SalesMan

1-1

0-N

of

1-1

0-Nin

1-1

0-N

from

REGION
Name
SalesMan
id: Name

ORDER
OrdID
Date
ItemCode
Qty
SalesMan
id: OrdID

CUSTOMER
CustID
Name
AQddress
id: CustID

0-N

1-1of

0-N

1-1

in

REGION
Name
SalesMan
id: Name

ORDER
OrdID
Date
ItemCode
Qty
id: OrdID

CUSTOMER
CustID
Name
AQddress
id: CustID

6-10 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

in the DS Extraction phase from sources classified as E(∆) in Figure 5-3.

Structural redundancy
The main problem is to detect the redundancy constraint that states the equivalence or the de-
rivability of the redundant constructs. The expression of such constraints is of the form C1 =
f(C2, C3, ...), where C1 is the designation of the redundant construct. Note that expressions
such as f1(C1, C2, ...) = f2(C3, C4, ...) generally do not express redundancy, but rather a pure
integrity constraint, in which case no constructs can be removed (see Figure 6-8 for instance).
Figure 6-11 depicts the elimination of a composed relationship type and of a duplicate at-
tribute.

Normalization redundancy
An unnormalized structure is detected in entity type B by the fact that the determinant of a
functional4 dependency is not an identifier of B . Normalization consists in splitting the entity
type by segregating the components of the dependency as illustrated in Figure 6-12. Note that
the relationship type should be one-to-many and not one-to-one, otherwise, there would be
no redundancy.

Figure 6-12: Normalization transformation.

Restructuration
We recall that these techniques introduce no redundancy, so that their reversing at this level
is not mandatory in most case. For instance, we will find similar reasonings in the Normal-
ization phase. We will discuss the reversing of some of the main restructuration techniques.
• Vertical partitioning optimization

Source pattern: entity types E1 and E2 are linked by a one-to-one relationship type and
represents complementary properties (attributes or roles) of the same entity type. Action:
merge E1 and E2.

• Vertical merging optimization

4. Considering normal forms based on higher level dependencies is much less useful since they can-
not be detected nor even understood by practitioners.

⇔

EMPLOYEE
EmpID
Name
DepartName
Manager
id: EmpID
fd-lhs: DepartName
fd-rhs: Manager

1-1 1-Nin

EMPLOYEE
EmpID
Name
id: EmpID

DEPARTMENT
DepartName
Manager
id: DepartName

6.4 Conceptual normalization 6-11

18/5/2002  J-L Hainaut 2002

Source pattern: entity type E includes properties related to independent entity types.
Action: split according to semantic similarities.

• Horizontal partitioning optimization
Source pattern: entity types E1 and E2 have the same properties and represent the same
kind of entities. Action: remove E1 or E2.

• Horizontal merging optimization
Source pattern: entity type E has unclear semantics that seem to encompass two similar
but distinct entity categories. Action: either define E1 and E2 as independent entity
types, or build an ISA hierarchy in which E1 and E2 are subtypes. Warning: this group-
ing could be the implementation of relationships between the entities (such as in Figure
5-12 for example). In that case a relationship type must be defined between E1 and E2.

• Complex multivalued attribute
We mention this technique since it is frequently found as a way to avoid multiple physi-
cal access to dependent record types from the parent record type. It has been presented
in Figure 6-3.

• Hierarchically sequenced records
This technique is a popular implementation of relationship types in standard files, but
can be found in DBMS offering a direct representation of this construct. In this case, this
technique can be considered as an optimization (Figure 6-4).

• Technical identifier
A short primary identifier that bears no semantics, and that has no counterpart in the
application domain can be discarded provided the entity type has another identifier.

6.4 Conceptual normalization

Let us first observe that what we call Normalization generally does not encompass the rela-
tional interpretation of the term. Indeed, relational normalization aims at removing redun-
dancy abnomalies, therefore resorting to de-optimization reasonings.
The goal of the normalization transformations is to improve, if necessary, the expressiveness,
the simplicity, the readability and the extendability of the conceptual schema. In particular,
we will try to make higher-level semantic constructs (such as ISA relations) explicit. Wheth-
er such expressions are desirable is a matter of methodological standard, of local culture and
of personal taste. For instance, a design methodology that is based on a binary, functional ER
model (e.g., the Bachman's model of the seventies) will accept most of the conceptual schema
obtained so far. More powerful models will require the expression of, e.g., ISA relations or
N-ary relationship types when relevant. In addition, the final conceptual schema is supposed
to be as readable and concise as possible, though these properties basically are subjective. We
shall mention some standard transformations that are of interest when refining a conceptual

6-12 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

schema. This list is of course far from complete.

Figure 6-13: Merging two entity types. If the cardinality of more.SALESMAN (left) is [0-1], constraint
"coexist: TotalSales, YearlySales" must be added to SALESMAN (right).

• Relationship entity type. By this term, we mean an entity type whose aim obviously is to
relate two or more entity types. It will be transformed into a relationship type through
transformation ET-RT. This technique typically produces many-to-many and N-ary
relationship types, as well as relationship types with attributes.

• Attribute entity type. Such an entity type has a small number of attributes only, and is
linked to one other entity type A through a [1-j] role. All its attributes participate to its
identifier. It can be interpreted as nothing more than an attribute of A, possibly multival-
ued and compound (transformation ET-Att.

• Exact maximum cardinality. Multivalued attributes and some rel-types are derived from
array fields in physical record types. Since the latter construct naturally is limited in
size, so are their conceptual interpretation. This limit must be questioned: is it of seman-
tic nature (a person has up to 2 parents) or is it simply inhérited from its physical origin
(an order has up to 10 details) ? In the latter case, the limit can be relaxed and set to N.

• One-to-one relationship type (case 1). May express the connection between fragments
B1 and B2 of a unique entity type B (vertical partitioning). These fragments can be
merged through transformation Merge if the resulting schema is clearer (Figure 6-13).
However, it may also represent an ISA relation (see case 2 below), or a genuine one-to-
one relationship type that must be preserved.

• Long entity type. Conversely, an entity type that comprises too many attributes and roles
can suggest a decomposition into semantically homogeneous fragments linked by one-
to-one relationship types (transformation Split).

• N-ary relationship type with a [i-1] role. It can be transformed into binary, one-to-many
relationship types through a relational decomposition (Figure 6-14).

⇔
1-11-1 more

STATISTICS
TotalSales
YearlySales

Year
Amount

SALESMAN
SalesManID
Name
Address
Phone
id: SalesManID

SALESMAN
SalesManID
Name
Address
Phone
TotalSales
YearlySales

Year
Amount

id: SalesManID

6.4 Conceptual normalization 6-13

18/5/2002  J-L Hainaut 2002

Figure 6-14: Decomposition of a N-ary relationship type through its [i-1] role.

• Entity types with common attributes and roles. They can be made the subtypes of a com-
mon supertype that inherits the common characteristics (Figure 6-15).

Figure 6-15: Defining a supertype. In fact, the transformation is a bit more complex when con-
straints, such as identifiers, hold in the source entity types.

• Groups of coexistent attributes and roles. Each of them can be extracted as a subtype of
the parent entity type (Figure 6-16). An entity type that has one subset of coexistent
optional attributes and roles can also be examined for such a transformation. Here, we
have applied transformations Split, then RT-ISA. See also Figure 2-7.

⇔

⇔

0-N

0-N

0-1 rented

SALESMAN

EQUIPMENT

CLIENT 0-1

0-Nrented-to

0-1

0-Nrented-by SALESMAN

EQUIPMENT
coex: rented-to.CLIENT

rented-by.SALESMAN

CLIENT

WORKER
PID
Name
Address
Specialty

EMPLOYEE
PID
Name
Address
Level
Function

P

WORKER
Specialty

STAFF
PID
Name
Address

EMPLOYEE
Level
Function

6-14 6 • The data structure conceptualization process

 J-L Hainaut 2002 18/5/2002

Figure 6-16: Defining subtypes from coexistent subsets of optional attributes/roles.

• Bunch of one or several one-to-one relationship types (case 2). If they share a common
entity type A, they may express a specialization relation in which A is the supertype.
These relationship types are replaced with IS-A relations through transformation RT-
ISA (Figure 6-17).

Figure 6-17: Defining IS-A relations from one-to-one relationship types.

Note that the last three techniques simply reverse the three basic expressions of an IS-A hier-
archy into the plain ER model as described in [Batini 1992] for instance. They can be spe-
cialized in order to make them cover all the situations of total and/or exclusive subtypes. An
in-depth analysis of IS-A relations implementation can be found in [Hainaut 1996].

⇔

⇔

STAFF
PID
Name
Address
Level[0-1]
Function[0-1]
Specialty[0-1]
coex: Level

Function
exact-1: Level

Specialty

P

WORKER
Specialty

STAFF
PID
Name
Address

EMPLOYEE
Level
Function

1-1

0-1

is-a

1-1

0-1

is-a

WORKER
Specialty

STAFF
PID
Name
Address
exact-1: is-a.EMPLOYEE

is-a.WORKER

EMPLOYEE
Level
Function

P

WORKER
Specialty

STAFF
PID
Name
Address

EMPLOYEE
Level
Function

18/5/2002

Chapter 7

DMS-oriented DBRE methodologies

Abstract

In sections 5 and 6 we have laid down the basic concepts, reasonings and techniques that are
valid for any DBRE project, independently of the DMS. The DMS-specific aspects are very
few, mainly comprising the nature of the declared structures such as the DDL, the views
mechanisms and the possible data dictionaries. The other processes, such as elicitating im-
plicit constructs, untranslating, de-optimizing and normalizing, are fairly abstract activities
that are loosely linked, if ever, with the concerned DMS. In addition, what one could consider
as typical relational techniques happen to be frequently used in other DMS models, such OO,
IMS or COBOL. However, closing here the discussion on DBRE methodology would be
frustrating for the reader, who expects special attention to his/her personal problem context
and background. Hence this section, in which we attempt to summarize the main problems
that are likely to appear for each of the most popular DMS.

7-2 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

7.1 Standard file reverse enginering

COBOL applications form the most important target of reverse engineering projects. Most of
them use simple files to store persistent data. If these data are not too complex, standard files
can prove more efficient and far less costly than database technology.

COBOL (or other 3GL) data managers generally offer three kinds of file structures, namely
sequential (no identifiers, no access keys), relative (technical numeric identifier and access
key) and indexed sequential (any number of identifiers and access keys, each composed of
one single-valued field). A file can accommodate records of one or several types. A record
type is made of at least one mandatory fields. A field is atomic or compound. It is single-
valued or multivalued (array, with a min-max index range). There is no such things as foreign
keys nor any constraints but the identifiers.
Variants. Pascal, C, PL/1 and ADA files will be processed in the same way. RPG files are
very popular on mid-range systems. They are similar to COBOL files with three main differ-
ences: (1) there is a unique file description text, (2) names are up to 6-character long (leading
to name interpretation problems) and (3) only atomic, single-valued, mandatory fields are al-
lowed. Reverse engineering old BASIC applications is particularly challenging due to some
disturbing characteristics: (1) field names comprise one letter + one optional digit, and gen-
erally are meaningless, hence the systematic use of arrays to represent records, (2) a record
can be read and written in several parts, through more than one statement and (3) control
structures are closer to those of Assembler than of 3GL.

COBOL Data structure extraction
The COBOL language standard provides no global file and record type definitions. Instead,
each program specifies on which file(s), on which record type(s), and on which fields it in-
tends to work. Therefore, a tentative global schema must be obtained by merging (Physical
integration process) the definitions found in a collection of programs. The DDL code extrac-
tion process has to parse two code sections, namely (1) the File control of the Environment
division, that yields file definitions and primary identifiers and (2) the File section of the Data
division that provides record types structure (see Table 1). In disciplined environments,
copybooks (see 9.4.3, Physical integration) can be considered as a primitive form of data dic-
tionary. A COBOL-specific Schema Refinement phase could be as follows1:

1. The most important constructs are in bold face.

7.1 Standard file reverse enginering 7-3

18/5/2002  J-L Hainaut 2002

This process has to be iterated since the discovery of a construct can suggest the existence of
another one.

COBOL Basic conceptualization
The COBOL data model imposes few constraints on field structures. The most important one
concerns multivalued fields, which can be represented through arrays only. However, some
programmers adopt relational-oriented representations such as concatenation (MultAtt-Sin-
gle) or instantiation (MultATT-Serial) that can be processed as illustrated in Figure 6-1. In
addition, optional fields can be represented as multivalued fields with max cardinality of 1
(... occurs 1 depending of ...). Compound fields will be decomposed if they
were artificially aggregated due to the fact that an index can be defined on one field only.
Record fields can overlap (through rename and redefine statements), leading to multiple
definition structures that must be clearly understood. Three cases must be considered:

1. A field definition F2 is compatible (e.g., has same total length) with, but more detailed
than field definition F1. Possible interpretation: F2 is a more detailed view of F1; keep
F2 and discard F1.

2. A field definition F2 is incompatible with field definition F1. Possible interpretation:
each definition represents the specific properties of a different category of records;
define as many subtypes as there are definitions.

3. A record definition R2 is incompatible with record definition R1. Possible interpreta-
tion: there are two different record types, possibly linked through an implicit relationship
type (see Figure 5-12 and Figure 6-4).

The absence of explicit rel-type representation is a more challenging constraint. The most
popular representation is through foreign keys, that can be multivalued (Figure 7-1) and non
standard. Note that this technique requires that the foreign key is a the top level field. Should
it be a component of a compound field, the compound attribute should be processed first (by
transformations Disagg or Att-ET/inst for instance). The foreign key is reversed through
transformation FK-RT.

1. Refine the record type and field structure
2. Find the implicit optional, compound or multivalued fields
3. Find the multiple field and record structures (rename and redefine)
4. Find the missing records identifiers, particularly in sequential and relative files
5. Find the identifiers of complex multivalued fields
6. Interpret arrays as sets or lists
7. Find foreign keys, including those embedded into multivalued fields.
8. Find existence constraints among optional fields
9. Refine min-max cardinalities of multivalued fields
10. Identify redundancies
11. Find enumerated value domains and constraints on value domains

7-4 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

Figure 7-1: Representation of a foreign key by a relationship type. Due to the cardinality of the for-
eign key, the latter is many-to-many.

Another technique consists in implementing a one-to-many relationship type R between en-
tity types A and B by integrating B entities as instances of a multivalued, compound, attribute
of A. Recovering the origin constructs R and B can be done by applying transformation Att-
Et/inst on the complex attribute, promoting it to an entity type, as illustrated in Figure 6-3.

Finally, a one-to-many rel-type can be represented by a sorted multi-record-type, sequential
or indexed file (Figure 5-12).

7.2 Hierarchical database reverse enginering

IMS has long been (since 1968) the main database engine on IMB large systems, progressive-
ly replaced with DB2 for more than a decade and a half. Many current mission critical, high
performance, batch and transactional applications still are based on IMS databases. Originat-
ed in the mid-sixties as a tape-based hierarchical data manager, it has grown, rather inelegant-
ly, to a full-fledge database and data communication system. The data model is awkward,
plagued by numerous ill-integrated incremental add-ons and perplexing limitations that
makes it a real delight for DBRE researchers, but a bit less appreciated by practitioners.
Much more than the CODASYL proposals, IMS was the main advocate for the relational rev-
olution in the late seventies.
The IMS (improperly called DL/1) model structures a schema as a collection of segment
types (record types), linked by one-to-many relationship types, that fall into two classes,
physical and logical [Elmasri 1997]. The one side of a relationship type is a physical or log-
ical parent while the many side is a physical or logical child. Ignoring logical relationship
types, the schema reduces to a forest, i.e. a collection of trees (or physical DB’s). The root of
each tree is called a root segment type. Each root can have one identifier, that is an access
key and can be a sort key as well. It consists of one field. Each relationship type defines an
access path, from the parent to the child only. A child segment type can have an identifier
made of its parent + one local field. This identifier is not an access key. Fields are mandatory,
single-valued and atomic. However, compound attributes can be simulated by defining over-
lapping attributes through common physical positions. Due to the weakness of field struc-
tures, many segment types are defined with a long, anonymous data field that is redefined

⇔
SALESMAN
PID
Name
Address
id: PID

REGION
RegionName
Status
InCharge[0-10]
id: RegionName
ref: InCharge[*]

0-N0-10 inCharge

SALESMAN
PID
Name
Address
id: PID

REGION
RegionName
Status
id: RegionName

7.2 Hierarchical database reverse enginering 7-5

18/5/2002  J-L Hainaut 2002

through copybooks or program local variables.

Most IMS databases are built with the latter physical constructs. However, two additional
features can be used, namely logical relationship types and secondary indexes. A logical re-
lationship type represents an access path from a (logical) child segment type to a parent one.
A logical relationship type can be defined between any two segment types provided some ex-
otic constraints are satisfied: a segment type can have only one logical parent, a logical child
must be a physical child (i.e., not a physical root), a logical child cannot be a logical parent,
the physical parent of a logical child cannot be a logical child, etc. When bi-directional access
paths are needed, IMS proposes to define two, inverse, logical relationship type structures
(the pairing technique). A secondary index is an access key based on any field hierarchy of
the database, whatever their segment type. Surprisingly enough, logical relationship types
and secondary indexes are considered in the IMS world as intimidating constructs which are
difficult and dangerous to use. Even rather recent references [Geller 1989], though insisting
on their harmlessness, suggest to avoid them whenever possible, for instance by replacing re-
lationship types by foreign keys controlled by the application programs.
This description delineates clearly the main problems that will appear when translating an
conceptual schema into an IMS structure: ISA relations, compound and multivalued at-
tributes, entity types with several identifiers, one-to-one, many-to-many or cyclic relationship
types, circuits, entity types with more than two parents, complex identifiers.

IMS Data structure extraction
The main textual sources of explicit data structure definition are:
• the physical Database Description, that defines each physical hierarchy, i.e., the segment

types, their fields, their physical relationships and their logical relationships, if any;
duplicate structures resulting from segment pairing can be resolved easily since they are
explicitly declared. The redundant logical children can be merged in a preliminary step.

• the logical Database Descriptions, the Secondary Index specification and the Program
Communication blocks, that each define a sort of view of the database intended to define
access paths to the data;

• host language Copybooks, that redefine segment types.

Merging DL/1 definitions and Copybooks definitions can be straighforward when they are
compatible, but will require more care if they are conflicting, in which case they may suggest
supertype/subtype structures.
The following list of operations could form the basis for an IMS-specific Schema Refinement
phase:

7-6 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

IMS Basic conceptualization
Many of the conceptualization problems can be considered to be relevant to conceptual nor-
malization (e.g., recovering many-to-many or cyclic relationship types). We shall concen-
trate on recovering non-compliant one-to-many relationship types. We know that they have
been transformed, most often, into foreign keys (manually controlled) as in relational sche-
mas, by merging their entity types (producing a possibly unnormalized structure), or into re-
lationship entity types. Recovering the source relationship type from application of latter
technique is described in Figure 7-6. However, to make the process clearer, processing a typ-
ical IMS substructure is depicted in Figure 7-2, where entity types F and G have been consid-
ered as one-to-many rel-type representations. Once again, the main difficulty is to detect the
one-to-one cardinality of R5 and R7. R6 and R8 (or R5 and R7) can be implemented trough
foreign keys, possibly supported by secondary indexes.

Figure 7-2: Recovering one-to-many rel-types in a typical hierarchical schema.

1. Refine the segment type and field structure
2. Find the implicit optional, compound or multivalued fields
3. Find the multiple field and record structures (rename and redefine)
4. Find the missing segment identifiers, particularly in non-root segment types that de-

pend on two parents
5. Interpret arrays as sets or lists
6. Find the implicit foreign keys
7. Find existence constraints among optional fields
8. Refine min-max cardinalities of relationship types (many of them actually are one-to-

one)
9. Refine min-max cardinalities of multivalued fields
10. Identify redundancies such as duplicated segment types
11. Find enumerated value domains and constraints on value domains

⇔

0-1

1-1

p4

0-1

1-1

p3

0-N

1-1

p2

0-N

1-1

p1 0-N

1-1

l2

0-N

1-1

l1

VEHICLE

SHIPMENT

MADE-BY ITEM IS-OF

CLIENT CLASS

1-1

0-N

p2

1-1

0-N

p1

0-1

0-N

made-by

0-1

0-N

is-of

VEHICLE

SHIPMENT

ITEM

CLIENT CLASS

7.3 Network database reverse enginering 7-7

18/5/2002  J-L Hainaut 2002

Due to the weakness of the hierarchical model, many schema include redundant segment
types and redundant fields. Identifying and discarding them is the main task of the de-optimi-
zation phase.

IMS structure understanding has gained a new interest with the emergence of XML as a way
to organize permanent data. Indeed, an XML database structure is made up of trees of ele-
ments that can be linked with references (IDREF in XML or REF in XML schemas). There-
fore, all the heuristics that IMS database designers used to apply still are valid for structuring
XML databases.

7.3 Network database reverse enginering

The name network generally designates some variant of the CODASYL DBTG data model
recommendations. About twenty of them have been implemented, ranging from high-end
mainframe DBMS (IDMS, IDS-2, UDS) to small system DBMS (SIBAS, MDBS). Despite
their qualities, such as the richness of their data model, their tight interface with COBOL
(both come from the CODASYL group) and their performance, they have been progressively
replaced by RDBMS. However, many CODASYL-based legacy systems still are active,
probably for many years.
Among the logical models considered in this chapter, this one is the closest to the Entity-re-
lationship model. A schema is made of record types and set types (one-to-many, non cyclic,
relationship types). A set type is made of one owner record type and one or several member
record types. A record type can have an arbitrary number (including none) of fields. A field
can be optional/mandatory, single-valued/multivalued (array) and atomic/compound. A
field-only identifier can (but must not) be defined on each record type. An arbitrary number
of identifiers can be declared among the members of a set type (each represents an identifier
made of one role and one/several fields).

Each schema includes the SYSTEM record type that has one and only one instance. A system
set type is a set type whose owner is SYSTEM and whose member is a user-defined record
type. It is called singular since there only one instance of this type. A system set type with
member M is used for several purposes: to define a subset of M records, to define a secondary
all-field identifier for M, to define a secondary field-only indexes on M and to define sorted
access paths to M records. Since these constructs are very frequent, it is important to identify
the goal of each system set type.

CODASYL Data structure extraction
The main source of explicit structures is the schema description coded in Schema DDL. Quite
frequently, subschemas (i.e., users views) express more detailed data structures, and are
worth being analyzed. The physical DDL (DMCL) specifications generally are useless and
can be ignored. Copybook are frequently used, and provide the same information as users

7-8 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

views.
The main implicit constructs to search for are the field decomposition, the foreign keys, the
exact cardinalities of roles and fields and the complex record type identifiers. Redundancies
are less frequent than in hierarchical schemas, but are worth being paid some attention. We
can suggest the following searching script, that will apply in most cases.

CODASYL Basic conceptualization
Due to the richness of the CODASYL model, there are less structural problems to be solved
when translating a conceptual schema into a logical schema than for any other DMS model.
As far as conceptual structures are concerned, the main restrictions apply on relationship
types (one-to-many and non-cyclic) and on identifiers (one absolute id through location mode
calc; one relative id per relationship type through duplicates not in the member clause).
Therefore, non-binary relationship types, many-to-many relationship types, one-to-one rela-
tionship types, cyclic relationship types, secondary field-only identifiers, identifiers with
more than one role, have to be transformed.

Recovering non-binary and many-to-many relationship types will be considered as the target
of conceptual normalization (ET-RT), and will be ignored in this section. A one-to-one re-
lationship type is implemented either by a one-to-many relationship type limited by a cardi-
nality constraint, or by a foreign key. Evidence of the first technique will be found through
procedural code analysis and data analysis. Processing the second technique is similar to the
situation of COBOL and relational schemas. A cyclic relationship type can be represented
by an entity type and two one-to-many or one-to-one relationship types. Recovering such a
relationship type falls in the conceptual restructuring techniques. It can also be represented
by a foreign key, as for COBOL and relational models (Figure 6-5).
An record type with K field-only identifiers will be inserted into (K-1) system set types, i.e.,
relationship types whose (0-N) role is played by the SYSTEM entity type. Each of the (K-1)
secondary identifiers is declared local within one of each such SYSTEM relationship type.

1. Refine the record type and field structure
2. Find the implicit optional, compound or multivalued fields
3. Find the multiple field and record structures (rename and redefine)
4. Identify clearly the role of each SYSTEM set type
5. Find the missing record identifiers, particularly those which include more than role as

well as the secondary field-only identifiers
6. Interpret arrays as sets or lists
7. Find the implicit foreign keys
8. Find existence constraints among optional fields
9. Refine min-max cardinalities of relationship types (some of them actually are one-to-

one)
10. Refine min-max cardinalities of multivalued fields
11. Identify redundancies
12. Find enumerated value domains and constraints on value domains

7.3 Network database reverse enginering 7-9

18/5/2002  J-L Hainaut 2002

The origin identifiers are recovered by discarding the SYSTEM component (Figure 7-3).

Another implementation technique consists in extracting the attributes of the identifier to
transform them into a record type, linked to the main record type through a one-to-one rela-
tionship type. This construct can be detected as an attribute entity type in the Conceptual Nor-
malization process.

Figure 7-3: Recovering a secondary attribute-only identifier.

A complex identifier that includes more than one role component cannot be expressed as
such. Either this identifier is discarded from the schema, and processed by procedural sec-
tions, or all the role components but one are replaced by foreign keys.

Figure 7-4: Recovering a complex identifier (with more than one role component).

⇔

⇔

0-N

1-1

SysReg

SYSTEM

CUSTOMER
PID
Name
RegNumber
Address
id: PID
id': SysReg.SYSTEM

RegNumber

CUSTOMER
PID
Name
RegNumber
Address
id: PID
id': RegNumber

DETAIL.ItemCode
 =
DETAIL.itd.ITEM.ItemCode

0-N

1-1

ord 0-N

1-1

itd

ORDER
OrdNum
Date
id: OrdNum

ITEM
ItemCode
Description
id: ItemCode

DETAIL
ItemCode
Qty
id: ord.ORDER

ItemCode

1-1

0-N ord

1-1

0-Nitd

ORDER
OrdNum
Date
id: OrdNum

ITEM
ItemCode
Description
id: ItemCode

DETAIL
Qty
id: ord.ORDER

itd.ITEM

7-10 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

The latter technique can be reversed as proposed in Figure 7-4. The schema may keep the
source rel-type, according to the principles of non-information bearing sets as proposed in the
70's [Metaxides 1975]. In such situations, some DBMS offer a trick (an option of the set se-
lection clause) through which the referential constraint is automatically maintained.
The optimization techniques are less frequent in CODASYL schemas. However, it would be
wise to search them for constructs such as:
• composed set types (Figure 6-11)
• in a set type, member attributes that are copied from owner attributes (Figure 6-11).
• hierarchically sequenced records (Figure 6-4).

7.4 Shallow database reverse enginering

The TOTAL DBMS (CINCOM), and its clone IMAGE (HP), have been intensively used on
small to medium systems to manage complex data in the seventies and eighties. The model
and the API both are simple as compared with those of IMS. The implementation is light and
efficient, and the database applications can run in small machines. Recovery and concurren-
cy management is rather primitive.

These DBMS propose very similar logical models (IMAGE offers additional secondary index
structures) that are generally classified as network [Tsichritsis 1977]. However, this common
model seems to fit also into the hierarchical model philosophy as far as design techniques are
concerned. It offers two kinds of record types, namely the master record types (master data
set), and the detail record types (variable entry data set). In addition one-to-many relation-
ship types can be defined between record types; each relationship type defines access-paths
from the master records to detail records. A master has single-valued, mandatory and atomic
fields, one of them being its identifier and access key; it can be origin (one side) of a relation-
ship type. A detail is the target (many side) of at least one relationship type. A detail record
is the target of at least one relationship type instance (the others can be optional). Among its
fields, there is a copy of the identifier value of each of its parent master. These copies behave
like redundant foreign keys that allow accessing the parent records. A detail has no identifier.
A TOTAL/IMAGE schema is a two-level hierarchy - sometimes called a shallow structure -
in which level 1 comprises masters only while level 2 is made of details only.

TOTAL/IMAGE Data structure extraction
The explicit data structures are extracted from the DDL source texts. All the other sources
mentioned in Section 5.3 will be used for recovering implicit constructs. The reasonings are
close to those applicable to CODASYL and IMS as far as relationship types are concerned,
including the elicitation of cardinalities and implicit identifiers. TOTAL allowing flat field
structures only, field refinement involves techniques which are used when processing rela-
tional databases. Due to the similarity with these DMS, we do not propose a specific script

7.4 Shallow database reverse enginering 7-11

18/5/2002  J-L Hainaut 2002

for the Schema Refinement phase.

TOTAL/IMAGE Basic conceptualization
In this model, the problems that occur when translating ER to TOTAL/IMAGE are numerous:
expressing complex attributes, non-functional rel-types, one-to-one rel-types, cyclic rel-
types, relationship type hierarchies with more than two levels and non-hierarchical schemas,
entity types with more than one identifier or with secondary access keys, just to mention the
most important. Systematic translation of some of these constructs has been proposed in
[Hainaut 1981].

In reverse engineering TOTAL/IMAGE schemas, the redundant foreign keys are detected
without problem since they are explicitly declared; they can be discarded without loss. Com-
pound attributes are most often processed in the same way as in relational schemas. A mul-
tivalued attribute can be detected either in the same way as in relational schemas or as a
single-attribute, single-parent, detail entity type (Figure 7-5).

Figure 7-5: Recovering a multivalued attribute. Since entity type CHR-NAME has no identifier, it
has been transformed into a bag attribute. Further analysis could lead to the discovery of some
identifying properties that would turn it into a set attribute.

One-to-one relationship types can be processed as in CODASYL and IMS schemas. Non-
compliant one-to-many relationship types, for instance cyclic relationship types or relation-
ship types between two master entity types, are most often expressed as relationship entity
types (Figure 7-6). They can be recovered provided R1 can be proved to be one-to-one.
Some one-to-many relationship types may be expressed implicitely as foreign keys, just like
in CODASYL and IMS schemas. As before, recovering many-to-many or higher-degree re-
lationship types is considered as of conceptual normalization concern.

⇔

0-4

1-1

has

CUSTOMER
CustID
Name
Address
id: CustID

CHR-NAME
ChristianName

CUSTOMER
CustID
Name
ChristianName[0-4] bag
Address
id: CustID

7-12 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

Figure 7-6: Recovering a one-to-many relationship type from a relationship entity type.

Figure 7-7: Recovering a 3-level hierarchy from a 2-level hierarchy. The constraint on the left-side
schema states that the <SUPPLIER, PRODUCT> couple of each ORDER entity must correspond
to an OFFERING entity.

The 2-level hierarchy constraint implies eliminating (1) non-hierarchical constructs, such as
circuits, and (2) deep hierarchies. The technique of Figure 7-6 (reverse) is often used to move
A one level up w.r.t. B (R is a common child of A and B, which are therefore at the same
level). Conversely, interpreting child entity type R as a one-to-many relationship type be-
tween A and B will automatically recover the origin B-A hierarchy. However, other tech-
niques can be used, such as that which is described in Figure 7-7, based on identifier
substitution. It requires detecting the inclusion constraint that states that any (A,B) instance
obtained from a D entity must identify a C entity (the notation S1oS2 expresses the relational
composition of S1 and S2). One-to-many relationship type elimination through foreign key

⇔

⇔

1-1

1-1

op

0-N

1-1

cp

PLACES

ORDER
OrdNum
Date
id: OrdNum

CUSTOMER
CustNum
Name
id: CustNum

1-10-N places

ORDER
OrdNum
Date
id: OrdNum

CUSTOMER
CustNum
Name
id: CustNum

SUPPLIER.s1.ORDER.s2.PRODUCT
 in
SUPPLIER.r1.OFFERING.r2.PRODUCT

0-N

1-1

s2

0-N

1-1

s1

0-N

1-1

r2

0-N

1-1

r1

SUPPLIER PRODUCT

ORDER

OFFERING
id: r1.SUPPLIER

r2.PRODUCT

0-N

1-1

S

1-1

0-N

r2

1-1

0-N

r1

SUPPLIER PRODUCT

ORDER

OFFERING
id: r1.SUPPLIER

r2.PRODUCT

7.5 Relational database reverse enginering 7-13

18/5/2002  J-L Hainaut 2002

(Figure 6-5) and entity type merging techniques (Figure 6-3) are also often observed.

7.5 Relational database reverse enginering

The relational model belongs to the basics of application development concepts, and need not
be described in detail. From the reverse engineering point of view, we can identify two fam-
ilies of RDBMS, namely the first generation (all brands, such as Oracle up to version 6) and
the second generation, known as SQL-2 compliant (almost all big names, including pioneer
Digital RDB). A good illustration of the first one is Oracle version 5, which still is in use in
many applications. It did not include primary or foreign keys, nor features such as database
triggers, predicates or stored procedures. The only ways to encode integrity was through
Views with check option and external techniques, including SQL-Forms pseudo-triggers
(Section 3.4). The second generation proposes primary and foreign keys as standard, power-
ful check/assertion predicates, database triggers and stored procedures. Unfortunately, (1)
modern SQL-2 engines still are servers for first generation applications and (2) new applica-
tions frequently are developed in such a way that they can use even first generation engines.

Relational Data structure extraction
There are two major sources for explicit constructs, namely SQL-DDL source texts and sys-
tem tables. The later are more reliable since they describes the current state of the data struc-
tures, while the DDL texts can be obsolete or available as a series of incremental definitions
instead of as a single text. Table 2 gives the main explicit structures extraction rules for SQL-
2 DDL scripts.

Implicit structures derives from the restrictions of the model and from specific design prac-
tices: finding aggregated columns, implicit identifiers and implicit foreign keys form the
main goals of this phase. However, all the other constraints must be addressed as well, as
suggested in the following schema refinement script.

1. Refine the column structure
2. Find the implicit optional, compound or multivalued columns
3. Find the multiple column structures (rename and redefine)
4. Find the missing table identifiers
5. Interpret arrays as sets or lists
6. Find the implicit foreign keys
7. Find existence constraints among optional columns
8. Refine min-max cardinalities of multivalued fields
9. Identify non key functional dependencies and other redundancies
10. Find enumerated value domains and constraints on value domains

7-14 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

Relational Basic conceptualization
As far as data structures are concerned, the relational model is particularly poor: single-val-
ued and atomic columns, no relationship types. Therefore, the main problems are to detect
representations of multivalued attributes, compound attributes and relationship types.

Most one-to-many and one-to-one relationship types are represented through plain foriegn
keys, and are easily recovered (Figure 6-5).
A multivalued attribute can be represented by a distinct table including a foreign key refer-
encing the main table. This pattern is processed by first resolving the foreign key, then by
integrating the attribute entity type as a mere attribute (Figure 7-6). Two other representation
techniques are also frequently used, though less elegant, namely instantiation (MultAtt-Se-
rial) and concatenation (MultAtt-Single).

The trace of an instantiation transformation can be detected by a structure of serial attributes,
i.e., a sequence of attributes with the same type and length, and whose names present syntac-
tical (EXP1, EXP2, etc) or semantical (JANUARY, FEBRUARY, etc) similarities (Figure 6-
1).
The concatenation representation of a multivalued attribute consists in replacing the set of
values by their concatenation, expressed as a single-valued attribute. Its domain appears as
possibly made of a repeated simple domain (4 x char(12) in Figure 7-8). In fact, this concat-
enation transforms a set of values into an array or into a list.

Figure 7-8: Representation of a concatenated attribute by a multivalued list attribute.

Array and list attributes may be considered undesirable, and pertaining to the implementation
level. Indeed, these structures do not enforce uniqueness and add an ordering relation to the
set of values. They are to be considered as poor representations of value sets. Therefore the
semantics-preserving transformation of Figure 7-9 could be preferred, and should be applied
when possible.

A compound attribute can be represented by concatenation, by attribute extraction as an entity
type, or by disaggregation, to mention the most frequent techniques. Disaggregation can be
detected by the presence of heterogeneous serial attributes whose names suggest a semantic
correlation, for instance through a common prefix. Recovering this gouping is straightfor-
ward (Figure 6-2).

⇔

DEPARTMENT
DeptName
Manager
Phones: char(48)
id: DeptName

DEPARTMENT
DeptName
Manager
Phone [0-4] list: char(12)
id: DeptName

7.6 Other standard DBMS reverse enginering 7-15

18/5/2002  J-L Hainaut 2002

Figure 7-9: It can be wise to give a set interpretation of array and list structures.

7.6 Other standard DBMS reverse enginering

Database implemented in other popular DBMS such as ADABAS (Software A.G.) or DATA-
COM/DB (ADR, then Computer Assiociates) can be processed with the same techniques as
those proposed in network, hierarchical and relational DBMS.

7.7 Object-oriented database reverse enginering

While database reverse engineering is getting mature, trying to recover the semantics of re-
cent OO applications seems to trigger little interest so far. The reason is that the problem is
overlooked because OO programs are supposed to be written in a clean and disciplined way,
and based on state-of-the-art technologies which allow programmers to write code that is
auto-documented, easy to understand and to maintain. The reality is more complex, and mod-
ern OO applications seem to suffer from the same problems as standard legacy systems as de-
scribed in Chapter 1: weakness of the OODBMS models, implicit structures, optimized
structures, awkward design and cross-model influence.
OO physical schemas generally are made of object classes, object attributes and methods (ig-
nored her). An attribute (or instance variable) can be atomic or tuple (= compound), it can be
single-valued or multivalued (set, bag, list). An important feature of OO-DBMS is that a
class attribute can draw its values from another object class. Therefore, the value of such an
attribute, which will be called object-attribute, can be an object or a collection of objects. An
object-attribute expresses references to other objects, which in turn can include another ob-
ject-attribute that references the former to form two sets of inverse references. The generic
model presented in Chapter 2 is extended to the representation of this construct (Figure 7-10).

⇔

DEPARTMENT
DeptName
Manager
Phone [0-4] list: char(12)
id: DeptName

DEPARTMENT
DeptName
Manager
Phones [0-4]

Sequence
Phone: char(12)

id: DeptName
id(Phones):

Sequence

7-16 7 • DMS-oriented DBRE methodologies

 J-L Hainaut 2002 18/5/2002

Figure 7-10: Object classes, object-attributes and inverse constraint. Note that Orders is a multi-
valued identifier of CUSTOMER. Indeed, each order has one owner only, which means that an or-
der identifies its customer.

The interpretation of these structures depends on the conceptual formalism used to express
the conceptual schema. If this formalism does not include object-attributes (such is the case
for OMT, UML and ODMG), they can be transformed into relationship types (Figure 7-11).

Figure 7-11: Transforming an object-attribute into a relationship type.

The main problems when reverse engineering OO databases come from the weaknesses of
current OO-DBMS. Indeed, many of them still inherit from OO languages, and have a very
poor set of integrity constraints. For instance, class identifiers, attribute identifiers, foreign
keys and inverse relations cannot be explicitly declared, and must be found through all the
elicitation techniques of the DS Extraction phase.

This topic will not be further developed in this section. See [Hainaut 1997b] and [Theodoros
1998] for instance for further detail.

⇔

ORDER
OrdNum
Date
Owner: *CUSTOMER
id: OrdNum
inv: Owner

CUSTOMER
CustNum
Name
Address
Orders[0-N]: *ORDER
id: CustNum
id': Orders[*]

inv

ORDER
OrdNum
Date
Owner: *CUSTOMER
id: OrdNum
inv: Owner

CUSTOMER
CustNum
Name
Address
Orders[0-N]: *ORDER
id: CustNum
id': Orders[*]

inv 0-N
Owner

1-1
Ordersplaces

ORDER
OrdNum
Date
id: OrdNum

CUSTOMER
CustNum
Name
Address
id: CustNum

20/5/2002

Chapter 8

CASE technology for DBRE

Abstract

Database reverse engineering appears as a demanding activity according to several dimen-
sions, ranging from the size and variety of the information sources to the complexity of the
target data structures. In this section, we translate the characteristics of DBRE activities into
CASE tool requirements and we present a representative CASE tool that includes specific
DBRE-oriented features. The name CARE (for Computer-Aided Reverse Engineering) has
once been suggested to identify the specific aspects of CASE. This term will be used in this
section.

8-2 8 • CASE technology for DBRE

 J-L Hainaut 2001 20/5/2002

8.1 Requirements

We will try to capture the essence of DBRE in order to identify the needed specific features
of a CASE tool that is to support reverse engineering activities. A more detailed analysis can
be found in [Hainaut 1996b].
• The tool must allow very flexible working patterns, included unstructured and explor-

atory ones. A toolbox architecture is recommended. In addition, the tool must be be
highly interactive.

• Specific functions should be easy to develop, even for one-shot use.
• The tool must include browsing and querying interfaces with a large variety of informa-

tion sources. Customizable functions for automatic and assisted specification extraction
should be available for each of them.

• It must provide sophisticated text analysis processors, including program understanding
tools. The latter can be language independent, easy to customize and to program, and
tightly coupled with the specification processing functions.

• The tool must include sophisticated name analysis and processing functions.
• A CARE tool must be a CASE tool as well. It includes a large set of functions, including

those required for forward engineering.
• It easily communicates with the other development tools of the organization, such as

other CASE tools, Data dictionaries or DMS, e.g., via integration hooks or communica-
tion with a common repository.

• The specification model must be wide-spectrum, and allow the representation and the
processing of inconsistent components of different abstraction levels.

• The specification model and the basic techniques offered by the tool must be DMS-inde-
pendent, and therefore highly generic.

• The CARE tool must provide several ways of viewing both source texts and abstract
structures (schemas). Multiple textual and graphical views, summary and fine-grained
presentations must be available.

• The CARE tool must provide a rich set of schema transformation techniques. In particu-
lar, this set must include operators which can undo the transformations commonly used
in empirical database designs.

• The repository of the CARE tool must record all the links between the schemas at the
different levels of abstraction. More generally, the tool must ensure the traceability of
the reverse engineering processes.

Now, we discuss some technical aspects of CARE tools and illustrate them through the DB-
MAIN environment that addresses some of these requirements. This CASE environment, de-
veloped since 1991, is intended to support most database applications engineering process,
including reverse engineering1.

8.2 Project and document representation and management 8-3

20/5/2002  J-L Hainaut 2001

8.2 Project and document representation and man-
agement

Reverse engineering projects can use a large number of documents (coping with hundreds of
schemas and thousands of program source files is not unfrequent) that are involved in as many
engineering processes. These documents and activities must be represented and documented.
An important aspect of project management is activity tracing, through which the history of
the project is recorded, and can be searched, queried and processed, at various levels of detail
(Figure 9-14). This history should ensure a complete forward and backward traceability of
the project.

Figure 8-1: Four representations of the same schema: text extended (left), text sorted (bottom),
graphical compact (top) and graphical standard (right).

The specification documents, both formal and textual, at their different evolution states must
be available for examination, analysis and modification. The tool must be able to process
large schemas (e.g., 500 record types with 10,000 fields) and texts (e.g., beyond 100,000 loc
per program unit), and to let the analyst examine and manipulate them through different way

1. An education version of the tool, together with related educational, technical and scientific mate-
rial, can be obtained at http://www.info.fundp.ac.be/libd.

8-4 8 • CASE technology for DBRE

 J-L Hainaut 2001 20/5/2002

of viewing. For instance, a graphical representation of a schema allows an easy detection of
certain structural patterns, but is useless to analyse name correspondances and similarities, an
activity that requires textual presentations (Figure 8-1). The same can be said of program rep-
resentation.

8.3 Support for the data structure extraction process

According to Chapter 5, a CARE tool must offer a collection of analyzers for the main infor-
mation sources. We mention some examples here below.
First of all, the tool must include DDL extractors for popular DMS, such as COBOL, RPG,
IMS, CODASYL DDL and SQL. For missing DMS, it should be easy to write specific ex-
tractors. These processors create an abstract schema expressing the physical concepts of a
DDL text or of a data dictionary.

Program texts will be searched for instances of specific patterns ranging from the simplest
ones (locate all the "WRITE" statements) to complex syntactic structures such as that of Fig-
ure 5-4.
Dataflow and dependency analyzers build the relational graph of a program according to a set
of user defined relations. For instance, the COBOL assignment relation defined by pattern
"MOVE @var1 TO @var2" yields the equality graph of the program. Then, this graph will
be queried for specific objects. The result can be presented graphically or in context, by co-
louring the result statements in the program. These graphs must be coupled with the database
schema the program is concerned with.

Reducing a large program to the set of statements (i.e., the slice) that concern specific vari-
ables at a given program point requires a program slicer. This processor must be parametri-
zable in order to control the precision of the result, and must be coupled to the database
schema in concern.
The physical schema itself can give structural information that contribute to the identification
of hidden constraints and structures. Hence the importance of a schema analyzer which can
be controlled by structural predicates.

Foreign keys are the most important structures to elicit in practically all schemas. A dedicat-
ed foreign key analyzer must help apply the most common heuristics (Figure 8-2).

8.4 Support for the data structure conceptualization process 8-5

20/5/2002  J-L Hainaut 2001

Figure 8-2: Control panel of the search engine of the Reference key assistant of DB-MAIN. Con-
sidering a selected identifier (left), it has been asked to find all the attributes, possibly multivalued,
that have the same total length, and whose name includes all the characters of the target entity type,
i.e. "ITEM". The master panel will then show all the candidate foreign keys, including ItemCode,
and propose to define one or several of them.

Name analysis can bring important hints about hidden structures and synonyms, among oth-
ers. So, special processors will search schemas for name patterns and display names in sorted
order for visual examination of name sequences. Name processing consists in changing
names to make them more expressive and /or standardized (e.g., expanding "INV_" into "In-
voice-", or capitalize uppercase names).

Schema integration requires intelligent processors that are able to detect semantic correspon-
dences and to merge schemas while avoiding redundancies. Physical integration processors
can exploit layout similarities and dissimilarities among a set of record/field structures in or-
der to propose a common view of them.
Data analysis can be an important way to get hints and to evaluate hypotheses. A CARE tool
can read foreign data from a database, or can generate queries and small application programs
that report about candidate data properties such as uniqueness, inclusion (e. g., in foreign
keys), nullable fields, etc.

8.4 Support for the data structure conceptualization
process

This process, described in Chapter 6, heavily relies on transformation techniques. For some
fine-grained reasonings, precise chirurgical transformations have to be carried out on indi-
vidual constructs. This is a typical way of working in de-optimization activities. In other cas-

8-6 8 • CASE technology for DBRE

 J-L Hainaut 2001 20/5/2002

es, all the constructs that meet a definite precondition have to be transformed (e.g., all
standard foreign keys are replaced with binary relationship types). Finally, some heuristics
can be identified and materialized into a transformation plan. More precisely, the following
three levels of transformation must be available.
1. Elementary transformations. Transformation T is applied to object O. With these tools,

the user keeps full control on the schema transformation since similar situations can be
solved by different transformations; e.g., a multivalued attribute can be transformed in a
dozen of ways. The CARE tool must offer a rich toolbox of elementary transformations.

2. Global transformations. Transformation T is applied to all the objects of a schema that
satisfy predicate P. Such transformations can be carried out through a processor that
allows the analyst to define T and P independently. Examples: replace all single-compo-
nent one-to-one relationship types with foreign keys; replace all multivalued compound
attributes with entity types.

Figure 8-3: The Basic Global transformation assistant of DB-MAIN showing a simple transformation
script for COBOL conceptualization. The Advanced Global transformation assistant includes user-
defined predicates, filters and loop control structures as well as user-defined predicates and oper-
ations libraries.

3. Model-driven transformations. All the constructs of a schema that do not comply with a
given model are processed through a transformation plan. The CARE tool must allow
analysts to develop their own transformation plans (Figure 8-3).

Name processing and the schema integration will be used for refining the naming patterns and
merging conceptuel schemas if needed. Report generators will make the final conceptual
specifications available to their users while bridges with foreign CASE tools and Data Dic-
tionaries will distribute selected specifications among the information resources managers of

8.5 The DB-MAIN CASE environment 8-7

20/5/2002  J-L Hainaut 2001

the organization.

8.5 The DB-MAIN CASE environment

DB-MAIN is a general purpose CASE and meta-CASE environment which includes database
reverse engineering and program understanding tools. Its main goal is to support all the data-
base application engineering processes, ranging from database development to system evolu-
tion, migration and integration. In this scope, mastering DBRE is an essential requirement.
The environment has been developed by the Database Engineering Application Laboratory
(LIBD) of the University of Namur, as part of the DB-MAIN project. Extensions have been
(and are being) developed towards federated database methodology through the InterDB
project [Thiran 1998], methodological support for temporal databases (TimeStamp project
[Detienne 2001]) and XML engineering (Data migration projet [Delcroix 2001]). More spe-
cifically, it includes the following functions, components and capabilities:
• specifications management: access, browsing, creation, update, copy, analysis, memoriz-

ing;
• representation of the project history: processes, schemas, views, source texts, reports,

generated programs and their relationships;
• a generic, wide-spectrum, representation model for conceptual, logical and physical

objects; accepts both entity-based and object-oriented specifications; schema objects and
text lines can be selected, marked, aligned and colored;

• semantic and technical annotations can be attached to each specification object;
• multiple views of the specifications (4 hypertexts and 2 graphical views); some views are

particularly intended for very large schemas; both entity-based and object-oriented sche-
mas can be represented;

• a toolbox of about thirty semantics-preserving transformational operators which provide
a systematic way to carry out such activities as conceptual normalization, or the develop-
ment of optimized logical and physical schemas from conceptual schemas, and con-
versely (i.e., reverse engineering);

• code generators; report generators;
• code parsers extracting physical schemas from SQL, COBOL, CODASYL, RPG and

IMS source programs;
• interactive and programmable text analysers which can be used, a.o., to detect complex

programming clichés in source texts, to build dataflow and dependency diagrams, and to
compute program slices [Henrard 1998];

• a name processor to search a schema for name patterns and to clean, normalize, convert
or translate the names of selected objects;

8-8 8 • CASE technology for DBRE

 J-L Hainaut 2001 20/5/2002

• a history manager which records the engineering activities of the analyst, and which
makes their further replay possible;

• import and export of specifications;
• a series of assistants, which are expert modules in specific kinds of tasks, or in classes of

problems, and which are intended to help the analyst in frequent, tedious or complex
activities. It allows the analyst to develop scripts which automate frequent processes. A
library of predefined scripts is provided for the most frequent activities. Six assistants
are available at present: Basic global transformation (Figure 8-3), Advanced global
transformation, Schema analysis, Schema integration, Text analysis and Reference key
analysis (Figure 8-2).

No tools can be claimed to solve all current and future problems. Therefore, DB-MAIN also
includes a meta-development environment that allows administrators and method engineers
to extend, specialize, and combine the existing concepts and functions, and to develop new
ones. Extension can be performed in four ways.
First, the generic model itself can be enriched through several techniques such as meta-prop-
erties, semi-formal properties, stereotypes, and triggers associated with repository primitives.

Secondly, as already mentioned, several assistants include a script facility through which
fragments of method can be defined and stored, such as transformation, name processing,
schema analysis or text pattern definition.
Thirdly, specific methods can be defined, and enforced by the tool. A method is defined by
an MDL (Method Definition Language) script, compiled as a part of the repository, then en-
acted by the method engine.

Finally, new processors, such as specific report and code generators, DDL analyzers, or spec-
ifications checkers, can be developed in Voyager 2. This language allows CASE engineer
(analyst or method engineer) to develop new functions which will be seamlessly incorporated
in the tool without resorting to C++ programming. It is a complete 4th-generation language
which offers predicative access to the repository, easy analysis and generation of external
texts, definition of recursive functions and procedures, and a sophisticated list manager. It
makes the rapid development of complex functions possible.

8.6 State of the art in database CARE tools

In the early nineties, an increasing number of DBRE CASE tools were proposed to practitio-
ners [Rock 1990]. Almost every standard CASE tool was enriched with so-called reverse en-
gineering processors. The state of the art has completely changed at the present time. Indeed,
experience with large DBRE project has shown that the mythical Automatic Database Re-
verse Engineering, sometimes based on some intelligent algorithms and heuristics, has now
completely faded away. For instance, one of biggest names in CASE tools has progessively
reduced the scope of its once largely advertized reeingineering environment into a mere help

8.6 State of the art in database CARE tools 8-9

20/5/2002  J-L Hainaut 2001

in schema recovery. Most current CASE tools include a DDL extractor, a foreign key dis-
coverer (based on simplistic naming assumptions) and a primitive foreign key/relationship
type transformer. Such tools can only bring some help in highly disciplined (and therefore
very unfrequent) database designs.

On the contrary, DBRE appears as an interactive decision-based intellectual, and often man-
ual, activity. Current tools can help in extracting first-cut schemas and in maintaining schema
documentation in a graphical form. With them, almost all complex analysis and transforma-
tion processes must be carried out manually. This is the way most DBRE projects are per-
formed today.

20/5/2002

Chapter 9

A case study: Database Migration

Abstract

This section describes a small case study which is presented as a part of a migration project
in which a set of COBOL files are to be converted into relational tables. The objective of the
exercise is to produce a relational schema which translates as faithfully as possible the seman-
tics of those source files. As expected for such a small case study, not all the problems, all
the techniques and all the reasonings will be illustrated. We will mainly focus on program and
schema analysis.

9-2 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

9.1 Introduction

The source data structures appear in a small COBOL program which uses three files. These
files are to be converted into a relational databases in such a way that all the semantics of the
source data structures are translated into relational structures. This can be done in two steps:
first we elaborate a conceptual schema of the three files, then we translate this schema into
relational structures (Figure 9-1).

Figure 9-1: First level history of the whole project.

9.2 Project preparation

The only source of information that will be considered is the COBOL program listed in Chap-
ter 5 (named order.cob). The main processes and documents of the project, which will be car-
ried out with the help of a CASE tool, are described in Figure 9-1 and Figure 9-14.

9.3 Data structure extraction

The objective is to recover the complete logical schema comprising the explicit constructs ex-
pressed in the data structures declaration statements of the program(s) as well as the implicit
constructs burried, essentially, in the procedural statements.

DMS-DDL code extraction
This operation is carried out by a COBOL parser which extracts the file and record type de-
scriptions, and expresses them as a raw physical schema in the repository of the CASE tool

SQL Database DesignCOBOL Reverse Engineering

project.sql/1

ORDER/Conceptual

order.cob/1

9.3 Data structure extraction 9-3

20/5/2002  J-L Hainaut 2002

(Figure 9-2).

Figure 9-2: The raw physical schema: explicit file, record, field and key description.

Each record type is represented by a physical entity type, and each field by a physical at-
tribute. Record keys are represented by identifiers when they specify uniqueness constraints
and by access keys when they specify indexes. Files are represented as physical entity col-
lections.

Schema refinement
This schema will be refined through an in-depth inspection of the way in which the program
uses and manages the data. Through this process, we will detect additional structures and
constraints which were not explicitly declared in the file/record declaration sections, but
which were expressed in the procedural code and in local variables. We will consider four
important constructs, namely Field structure, Foreign keys, Multivalued field identifiers, and
Field cardinality.

• Field structure
Observation: some fields are unusually long (CUS-DESCR, CUS-HIST, ORD-DETAIL,
STK-NAME). Could they be further refined? Let us consider CUS-DESCR first. We build
the variable dependency graph, which summarizes the dataflow concerning CUS-DESCR
(statements <1> and <1'>):

This graph clearly suggests that CUS-DESCR and DESCRIPTION share the same values,
and should have the same structure as well, i.e.:

 01 DESCRIPTION.
 02 NAME PIC X(20).
 02 ADDRESS PIC X(40).
 02 FUNCTION PIC X(10).
 02 REC-DATE PIC X(10).

STK
STK-CODE: num (5)
STK-NAME: char (100)
STK-LEVEL: num (5)
id: STK-CODE

acc

ORD
ORD-CODE: num (10)
ORD-CUSTOMER: char (12)
ORD-DETAIL: char (200)
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE: char (12)
CUS-DESCR: char (80)
CUS-HIST: char (1000)
id: CUS-CODE

acc

CUSTOMER

CUS

ORDER

ORD

STOCK

STK

CUS.CUS-DESCR DESCRIPTION

9-4 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

This structure is associated with the field CUS-DESCR in the physical schema. We proceed
in the same way for CUS-HIST, ORD-DETAIL and STK-NAME (Figure 9-3). The analysis
shows that the last one need not be refined.

Figure 9-3: Physical schema (refined): the concatenated compound fields ORD-DETAIL, CUS-DE-
SCR and CUS-HISTORY have been decomposed.

• Foreign key elicitation
There should exist reference links among these record types. Let us examine the field ORD-
CUSTOMER for instance. We observe that:
• its name includes the name of a file (CUSTOMER);
• it has the same type and length as the record key of CUSTOMER;
• it is supported by an access key (i.e., an index);
• its dependency graph shows that it receives its values from the record key of CUS-

TOMER <4>:

• its usage pattern shows (through a program slice) that, before moving it to the ORD
record to be stored, the program checks that ORD-CUSTOMER value identifies a stored
CUS record (Figure 9-4).

These are five positive evidences contributing to making us confident that ORD-CUSTOM-
ER is a foreign key. We decide to confirm the hypothesis. In the same way, we conclude that:
• ORD-DETAIL.DETAILS.REF-DET-STK is a multi-valued foreign key to STOCK.

Here the REF part of the name suggests the referential function of the field.
• CUS-HIST.PURCH.REF-PURCH-STK is a multivalued foreign key to STOCK.

Now the schema looks like that in Figure 9-5.

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[20-20] array
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

acc: ORD-CUSTOMER

CUS
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[100-100] array

REF-PURCH-STK
TOT

id: CUS-CODE
acc

CUSTOMER

CUS

ORDER

ORD

STOCK

STK

CUS.CUS-CODE ORD.ORD-CUSTOMER

9.3 Data structure extraction 9-5

20/5/2002  J-L Hainaut 2002

Figure 9-4: The program slice Π(order.cob,ORD.ORD-CUSTOMER,line("WRITE ORD")) that
shows what happens before writing an ORD record in the ORDER file.

Figure 9-5: Physical schema (refined): three foreign keys have been made explicit.

 NEW-ORD.
 ...
 MOVE 1 TO END-FILE.
 PERFORM READ-CUS-CODE UNTIL END-FILE = 0.
 ...
 MOVE CUS-CODE TO ORD-CUSTOMER.
 ...
 WRITE ORD INVALID KEY DISPLAY "ERROR".
 ...
 READ-CUS-CODE.
 ACCEPT CUS-CODE.
 MOVE 0 TO END-FILE.
 READ CUSTOMER INVALID KEY
 DISPLAY "NO SUCH CUSTOMER"
 MOVE 1 TO END-FILE
 END-READ.

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[20-20] array
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-CUSTOMER
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK

CUS
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[100-100] array

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK

CUSTOMER

CUS

ORDER

ORD

STOCK

STK

9-6 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

• Elicitation of identifiers of multivalued fields
Compound multivalued fields in COBOL records often have an implicit identifier. This
means that multivalued field F has a (set of) subfield(s) I that makes the values of F unique
on I. The schema includes two candidate multivalued fields: ORD-DETAIL.DETAILS and
CUS-HIST.PURCH. By examining the way in which these fields are searched and managed,
we isolate the program fragment of Figure 9-6, that has been extracted from the program slice
Π(order.cob,ORD.ORD-DETAIL.DETAILS,line("WRITE ORD")).

Figure 9-6: Program fragment that suggests that field REF-DET-STK is an identifier for ORD-DE-
TAIL.DETAILS. It also gives information on the exact cardinalities of ORD-DETAIL.DETAILS. This
fragment has been extracted from the slice .

It derives from this code section that the LIST-DETAIL.DETAILS array of a record will nev-
er include twice the same REF-DET-STK value. Therefore, this field is the local identifier
of this array, and of ORD-DETAIL.DETAILS as well. Through the same reasoning, we are
suggested that REF-PURCH-STK is the identifier of LIST-PURCHASE.PURCH array.
These findings are shown in Figure 9-7.

• Refinement of the cardinality of multivalued attributes

The multivalued fields have been given cardinality constraints derived from the occurs claus-
es. The latter give the maximum cardinality, but tell nothing about the minimum cardinality.
Storing a new CUS record generally implies initializing each field, including CUS-
HIST.PURCH. This is done through the INIT-HIST paragraph (line <13>), in which the
REF-DET-STK is set to 0. Furthermore, the scanning of this list stops when 0 is encountered
(line <7>). The conclusion is clear: there are from 0 to 100 elements in the list. A similar
analysis of the fragment of Figure 9-6 leads to refine the cardinality of ORD-DETAIL.DE-
TAILS. Hence the schema of Figure 9-7.

 MAIN.
 PERFORM PROCESS
 UNTIL CHOICE = 0.

 PROCESS.
 PERFORM NEW-ORD.

 NEW-ORD.
 SET IND-DET TO 1.
 PERFORM READ-DETAIL
 UNTIL END-FILE = 0
 OR IND-DET = 21.
 WRITE ORD
 INVALID KEY DISPLAY "ERROR".

 READ-DETAIL.
 PERFORM READ-PROD-CODE.

 READ-PROD-CODE.
 PERFORM UPDATE-ORD-DETAIL.
 UPDATE-ORD-DETAIL.
 MOVE 1 TO NEXT-DET.
 PERFORM UNTIL
 REF-DET-STK(NEXT-DET)
 = PROD-CODE
 OR IND-DET = NEXT-DET
 ADD 1 TO NEXT-DET
 END-PERFORM.
 IF IND-DET = NEXT-DET
 MOVE PROD-CODE
 TO REF-DET-STK(IND-DET)
 SET IND-DET UP BY 1
 ELSE
 DISPLAY "ERROR : ...".

9.3 Data structure extraction 9-7

20/5/2002  J-L Hainaut 2002

Figure 9-7: Physical and logical schema (completed): the identifiers of multivalued attributes have
been detected and the minimum cardinalities have been set to their intended value.

Looking for more significant names
Program and schema analysis has given us an opportunity to find more informative names for
some schema objects.
1. The file names appear to be more explicit than the name of their respective record types:

CUSTOMER should be used for CUS, STOCK for STK and ORDER for ORD.

2. A program variable can have a better name than the field it receives its value from. So,
CUS-DESCR could be renamed DESCRIPTION.

Interpreting arrays
Since the array is the most straighforward implementation of multivalued attributes, we
should identify those which actually implement lists, bags and sets. Data analysis and usage
pattern analysis can be used. We observe that:

1. for CUS: the ordering of values of PURCH and the possibility to leave cells empty are

PURCH implements a set

DETAILS implements a list

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[0-20] array
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
ref: ORD-CUSTOMER

acc
id(ORD-DETAIL.DETAILS):

REF-DET-STK

CUS
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[0-100] array

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK
id(CUS-HIST.PURCH):

REF-PURCH-STK

CUSTOMER

CUS

ORDER

ORD

STOCK

STK

9-8 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

irrelevant, so that this array implements a mere set;
2. for ORD: the order of DETAILS values could be significant but there is no means to

leave a cell empty; this array seems to implement a list (in fact, a unique list).

9.4 Data structure conceptualization

Schema preparation
The schema obtained so far describes the complete COBOL data structures, including both
implicit and explicit constructs. Before trying to recover the conceptual schema, we clean the
current schema (Figure 9-8).

Figure 9-8: The (improved) logical schema.

• Discarding technical constructs. The physical constructs, namely the files and the access
keys, are no longer useful, and are removed.

• Name processing (1). The fields of each record type are prefixed with a common short-
name identifying their record type. This is a common programming trick that provides
shorter names but adds no semantics. We trim them out.

• Name processing (2). The new names suggested by schema and program analysis are
assigned to the schema objects.

STOCK
CODE
NAME
LEVEL
id: CODE

acc

ORDER
CODE
CUSTOMER
DETAILS[0-20] list

REF-DET-STK
ORD-QTY

id: CODE
ref: DETAILS[*].REF-DET-STK
ref: CUSTOMER
id(DETAILS):

REF-DET-STK

CUSTOMER
CODE
DESCRIPTION

NAME
ADDRESS
FUNCTION
REC-DATE

PURCH[0-100]
REF-PURCH-STK
TOT

id: CODE
ref: PURCH[*].REF-PURCH-STK
id(PURCH):

REF-PURCH-STK

9.4 Data structure conceptualization 9-9

20/5/2002  J-L Hainaut 2002

• Uselessly compound fields. Compound fields CUS.CUS-HIST and ORD.ORD-DETAIL
have one component only, and can be disaggregated without structural or semantic loss.

• Interpreting arrays. As observed in the previous phase, CUSTOMER.PURCH is a set
while ORDER.DETAILS is a list. We modify the schema accordingly.

Basic conceptualization

• Maximum cardinalities

Are the maximum cardinalities 100 and 20 of real semantic value, or do they simply express
obsolete technical limits from the legacy system? We take for true that there cannot be more
than twenty lines of detail in an order but that a customer can have any number of purchases
associated with him/her. The cardinality of DETAILS is left as is, but the cardinality of
PURCH is changed to [0-N].

• Expressing non-set multivalued attributes
Bags and lists (as well as arrays, if any) are expressed by set structures.

Figure 9-9: The maximum cardinalities have been evaluated for generalization and non-set multi-
valued attributes have been transformed.

STOCK
CODE
NAME
LEVEL
id: CODE

ORDER
CODE
CUSTOMER
DETAILS[0-20]

Sequence
REF-DET-STK
ORD-QTY

id: CODE
ref: DETAILS[*].REF-DET-STK
ref: CUSTOMER
id(DETAILS):

REF-DET-STK
id'(DETAILS):

Sequence

CUSTOMER
CODE
DESCRIPTION

NAME
ADDRESS
FUNCTION
REC-DATE

PURCH[0-N]
REF-PURCH-STK
TOT

id: CODE
ref: PURCH[*].REF-PURCH-STK
id(PURCH):

REF-PURCH-STK

9-10 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

• Complex attributes
The attributes CUSTOMER.PURCH and ORDER.DETAILS have a particularly complex
structure: they are compound, they are multivalued, they have local identifiers and they in-
clude a foreign key. They obviously suggest a typical COBOL trick to represent dependent
entity types. This very efficient technique consists in representing such entity types by em-
bedded multivalued fields. We transform the latter into entity types (Figure 9-10).

Figure 9-10: Making dependent entity types explicit.

• Foreign key interpretation
The foreign keys are the most obvious traces of the COBOL translation of one-to-many
relationship types (Figure 9-11).

1-1

0-20
of

1-1

0-N
by

STOCK
CODE
NAME
LEVEL
id: CODE

PURCH
REF-PURCH-STK
TOT
id: by.CUSTOMER

REF-PURCH-STK
ref: REF-PURCH-STK

ORDER
CODE
CUSTOMER
id: CODE
ref: CUSTOMER

DETAILS
Sequence
REF-DET-STK
ORD-QTY
id: of.ORDER

REF-DET-STK
id': of.ORDER

Sequence
ref: REF-DET-STK

CUSTOMER
CODE
DESCRIPTION

NAME
ADDRESS
FUNCTION
REC-DATE

id: CODE

9.4 Data structure conceptualization 9-11

20/5/2002  J-L Hainaut 2002

Figure 9-11: Untranslating foreign keys into relationship types.

Figure 9-12: A normalized conceptual schema.

Conceptual normalization
We will only mention three elementary problems to illustrate the process (Figure 9-12).
• Relationship type entity types. PURCH and DETAILS could be perceived as mere rela-

tionships, and are transformed accordingly.

1-1

0-N

place

1-1
0-20 of

1-1
0-N

in

1-1

0-N

from

1-1

0-N
by

STOCK
CODE
NAME
LEVEL
id: CODE

PURCH
TOT
id: in.STOCK

by.CUSTOMER

ORDER
CODE
id: CODE

DETAILS
Sequence
ORD-QTY
id: from.STOCK

of.ORDER
id': of.ORDER

Sequence

CUSTOMER
CODE
DESCRIPTION

NAME
ADDRESS
FUNCTION
REC-DATE

id: CODE

0-N 0-N
purchase
Tot

1-1

0-N

place

0-N0-N

details
Sequence
Ord-qty
id: ORDER

STOCK
Sequence

id': ORDER
STOCK

STOCK
Code
Name
Level
id: Code

ORDER
Code
id: Code

CUSTOMER
Code
Name
Address
Function
Rec-date
id: Code

9-12 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

• Names. Now the semantics of the data structures have been elicited, and better names
can be given to some of them. For instance, PURCH is given the full-name purchase.

• Unneeded aggregation. Attribute DESCRIPTION in CUSTOMER is an artificial aggre-
gate which can be dismantled without loss of semantics.

9.5 Database conversion

To complete the exercice, let us develop a new relational database schema from the concep-
tual specifications. The process is fairly standard, and includes the Logical design and the
Physical design phases. Due to the size of the problem, they are treated in a rather symbolic
way.

Logical design
Transforming this schema into relational structures is fairly easy: we express the complex re-
lationship types detail and purchase into entity types, then we translate the one-to-many re-
lationship types into foreign keys. The resulting schema comprises flat entity types,
identifiers and foreign keys. It can be considered a logical relational schema (Figure 9-13).

Figure 9-13: The physical relational schema.

STOCK
CODE
NAME
LEVEL
id: CODE

acc

PURCHASE
CUSTOMER
STOCK
TOT
id: CUSTOMER

STOCK
acc

ref: STOCK
acc

ref: CUSTOMER

ORDER
CODE
CUSTOMER
id: CODE

acc
ref: CUSTOMER

acc

DETAIL
ORDER
SEQUENCE
STOCK
ORD_QTY
id: ORDER

SEQUENCE
acc

id': STOCK
ORDER
acc

ref: STOCK
ref: ORDER

CUSTOMER
CODE
NAME
ADDRESS
FUNCTION
REC-DATE
id: CODE

acc
STK_SPC

STOCK

CUST_SPC

PURCHASE
ORDER
DETAIL
CUSTOMER

9.5 Database conversion 9-13

20/5/2002  J-L Hainaut 2002

Physical design and coding
We reduce this phase to processing the names according to SQL standard (e.g., all the names
in uppercase, no "-", no reserved words, etc.) and defining the record collections (dbspaces)
and the access keys (indexes) which support identifiers and foreign keys (Figure 9-13). As a
symbolic touch of optimization, we remove all the indexes which are a prefix of another index
(i.e., no index on PURCHASE.CUSTOMER and on DETAILS.STOCK). Generating the
SQL script that encodes this schema is straighforward.

Project history
To summarize the process, we show the history of the project in Figure 9-14.

Figure 9-14: Project history depicting the main engineering processes.

Generate Oracle 8

Physical Design

Logical DesignConceptual Normalization

Basic Conceptualization

Schema Preparation

Schema Cleaning

Schema Refinement

DMS-DDL code Extraction

Import source text

project.sql/1

ORDER/Physical Oracle8

ORDER/Logical Relat.

ORDER/Conceptual Norm.

ORDER/Conceptual Raw

ORDER/Logical Clean

ORDER/Logical

ORDER/Physical Refined

ORDER/Physical raw

order.cob/1

COBOL/Oracle8 Migration

R
ev

er
se

 E
ng

in
ee

ri
ng

F
or

w
ar

d
E

ng
in

ee
ri

ng

D
S

E
xt

ra
ct

io
n

D
S

C
on

ce
pt

ua
liz

at
io

n

9-14 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

9.6 The COBOL source code

IDENTIFICATION DIVISION.
PROGRAM-ID. C-ORD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT CUSTOMER
 ASSIGN TO "CUSTOMER.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CUS-CODE.
 SELECT ORDER
 ASSIGN TO "ORDER.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS ORD-CODE
 ALTERNATE RECORD KEY
 IS ORD-CUSTOMER
 WITH DUPLICATES.
 SELECT STOCK
 ASSIGN TO "STOCK.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS STK-CODE.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER.
01 CUS.
 02 CUS-CODE PIC X(12).
 02 CUS-DESCR PIC X(80).
 02 CUS-HIST PIC X(1000).
FD ORDER.
01 ORD.
 02 ORD-CODE PIC 9(10).
 02 ORD-CUSTOMER PIC X(12).
 02 ORD-DETAIL PIC X(200).
FD STOCK.
01 STK.
 02 STK-CODE PIC 9(5).
 02 STK-NAME PIC X(100).
 02 STK-LEVEL PIC 9(5).

WORKING-STORAGE SECTION.
01 DESCRIPTION.
 02 NAME PIC X(20).
 02 ADDRESS PIC X(40).
 02 FUNCTION PIC X(10).
 02 REC-DATE PIC X(10).
01 LIST-PURCHASE.
 02 PURCH OCCURS 100 TIMES
 INDEXED BY IND.

 03 REF-PURCH-STK PIC 9(5).
 03 TOT PIC 9(5).
01 LIST-DETAIL.
 02 DETAILS OCCURS 20 TIMES
 INDEXED BY IND-DET.
 03 REF-DET-STK PIC 9(5).
 03 ORD-QTY PIC 9(5).

01 CHOICE PIC X.
01 END-FILE PIC 9.
01 END-DETAIL PIC 9.
01 EXIST-PROD PIC 9.
01 PROD-CODE PIC 9(5).

01 TOT-COMP PIC 9(5) COMP.
01 QTY PIC 9(5) COMP.
01 NEXT-DET PIC 99.

PROCEDURE DIVISION.
MAIN.
 PERFORM INIT.
 PERFORM PROCESS UNTIL CHOICE = 0.
 PERFORM CLOSING.
 STOP RUN.
INIT.
 OPEN I-O CUSTOMER.
 OPEN I-O ORDER.
 OPEN I-O STOCK.
PROCESS.
 DISPLAY "1 NEW CUSTOMER".
 DISPLAY "2 NEW STOCK".
 DISPLAY "3 NEW ORDER".
 DISPLAY "4 LIST OF CUSTOMERS".
 DISPLAY "5 LIST OF STOCKS".
 DISPLAY "6 LIST OF ORDERS".
 DISPLAY "0 END".
 ACCEPT CHOICE.
 IF CHOICE = 1
 PERFORM NEW-CUS.
 IF CHOICE = 2
 PERFORM NEW-STK.
 IF CHOICE = 3
 PERFORM NEW-ORD.
 IF CHOICE = 4
 PERFORM LIST-CUS.
 IF CHOICE = 5
 PERFORM LIST-STK.
 IF CHOICE = 6
 PERFORM LIST-ORD.

9.6 The COBOL source code 9-15

20/5/2002  J-L Hainaut 2002

CLOSING.
 CLOSE CUSTOMER.
 CLOSE ORDER.
 CLOSE STOCK.

NEW-CUS.
 DISPLAY "NEW CUSTOMER:".
 DISPLAY "CUSTOMER CODE?"
 WITH NO ADVANCING.
 ACCEPT CUS-CODE.
 DISPLAY "NAME DU CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT NAME.
 DISPLAY "ADDRESS OF CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT ADDRESS.
 DISPLAY "FUNCTION OF CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT FUNCTION.
 DISPLAY "DATE: "
 WITH NO ADVANCING.
 ACCEPT REC-DATE.
 MOVE DESCRIPTION TO CUS-DESCR. <1>
 PERFORM INIT-HIST.
 WRITE CLI
 INVALID KEY DISPLAY "ERROR".

LIST-CUS.
 DISPLAY "LISTE DES CUSTOMERS".
 CLOSE CUSTOMER.
 OPEN I-O CUSTOMER.
 MOVE 1 TO END-FILE.
 PERFORM READ-CUS
 UNTIL END-FILE = 0.

READ-CUS.
 READ CUSTOMER NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY CUS-CODE
 DISPLAY CUS-DESCR
 DISPLAY CUS-HISTORY.

NEW-STK.
 DISPLAY "NEW STOCK".
 DISPLAY "PRODUCT NUMBER: "
 WITH NO ADVANCING.
 ACCEPT STK-CODE.
 DISPLAY "NAME: " WITH NO ADVANCING.
 ACCEPT STK-NAME.
 DISPLAY "LEVEL: " WITH NO ADVANCING.
 ACCEPT STK-LEVEL.

 WRITE STK
 INVALID KEY DISPLAY "ERROR ".

LIST-STK.
 DISPLAY "LIST OF STOCKS ".
 CLOSE STOCK.
 OPEN I-O STOCK.
 MOVE 1 TO END-FILE.
 PERFORM READ-STK UNTIL END-FILE = 0.

READ-STK.
 READ STOCK NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY STK-CODE
 DISPLAY STK-NAME
 DISPLAY STK-LEVEL.

NEW-ORD.
 DISPLAY "NEW ORDER".
 DISPLAY "ORDER NUMBER: "
 WITH NO ADVANCING.
 ACCEPT ORD-CODE.
 MOVE 1 TO END-FILE.
 PERFORM READ-CUS-CODE
 UNTIL END-FILE = 0.
 MOVE CUS-DESCR TO DESCRIPTION. <1'>
 DISPLAY NAME.
 MOVE CUS-CODE TO ORD-CUSTOMER. <4>
 MOVE CUS-HISTORY TO LIST-PURCHASE.
 SET IND-DET TO 1.
 MOVE 1 TO END-FILE.
 PERFORM READ-DETAIL
 UNTIL END-FILE = 0
 OR IND-DET = 21.
 MOVE LIST-DETAIL TO ORD-DETAIL. <2>
 WRITE COM
 INVALID KEY DISPLAY "ERROR".
 MOVE LIST-PURCHASE
 TO CUS-HISTORY. <3>
 REWRITE CLI
 INVALID KEY DISPLAY "ERROR CUS".

READ-CUS-CODE.
 DISPLAY "CUSTOMER NUMBER: "
 WITH NO ADVANCING.
 ACCEPT CUS-CODE.
 MOVE 0 TO END-FILE.
 READ CUSTOMER INVALID KEY
 DISPLAY "NO SUCH CUSTOMER"
 MOVE 1 TO END-FILE
 END-READ.

9-16 9 • A case study: Database Migration

 J-L Hainaut 2002 20/5/2002

READ-DETAIL.
 DISPLAY "PRODUCT CODE (0 = END): ".
 ACCEPT PROD-CODE.
 IF PROD-CODE = "0"
 MOVE 0
 TO REF-DET-STK(IND-DET)<12>
 MOVE 0 TO END-FILE
 ELSE
 PERFORM READ-PROD-CODE.

READ-PROD-CODE.
 MOVE 1 TO EXIST-PROD.
 MOVE PROD-CODE TO STK-CODE. <5>
 READ STOCK INVALID KEY
 MOVE 0 TO EXIST-PROD.
 IF EXIST-PROD = 0
 DISPLAY "NO SUCH PRODUCT"
 ELSE
 PERFORM UPDATE-ORD-DETAIL.

UPDATE-ORD-DETAIL.
 MOVE 1 TO NEXT-DET.
 DISPLAY "QUANTITY ORDERED: "
 WITH NO ADVANCING
 ACCEPT ORD-QTY(IND-DET).
 PERFORM UNTIL
 REF-DET-STK(NEXT-DET)
 = PROD-CODE<9>
 OR IND-DET = NEXT-DET
 ADD 1 TO NEXT-DET
 END-PERFORM.
 IF IND-DET = NEXT-DET <10>
 MOVE PROD-CODE
 TO REF-DET-STK(IND-DET) <6>
 PERFORM UPDATE-CUS-HISTO
 SET IND-DET UP BY 1
 ELSE
 DISPLAY "ERROR: ALREADY ORDERED".

UPDATE-CUS-HISTO.
 SET IND TO 1.
 PERFORM UNTIL
 REF-PURCH-STK(IND) = PROD-CODE
 OR REF-PURCH-STK(IND) = 0
 OR IND = 101 <7>
 SET IND UP BY 1
 END-PERFORM.
 IF IND = 101
 DISPLAY "ERR: HISTORY OVERFLOW"
 EXIT.

 IF REF-PURCH-STK(IND)
 = PROD-CODE <11>
 ADD ORD-QTY(IND-DET)
 TO TOT(IND)
 ELSE
 MOVE PROD-CODE
 TO REF-PURCH-STK(IND) <8>
 MOVE ORD-QTY(IND-DET)
 TO TOT(IND).

LIST-ORD.
 DISPLAY "LIST OF ORDERS ".
 CLOSE ORDER.
 OPEN I-O ORDER.
 MOVE 1 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 0.

READ-ORD.
 READ ORDER NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY "ORD-CODE "
 WITH NO ADVANCING
 DISPLAY ORD-CODE
 DISPLAY "ORD-CUSTOMER "
 WITH NO ADVANCING
 DISPLAY ORD-CUSTOMER
 DISPLAY "ORD-DETAIL "
 MOVE ORD-DETAIL TO LIST-DETAIL
 SET IND-DET TO 1
 MOVE 1 TO END-DETAIL
 PERFORM DISPLAY-DETAIL.

INIT-HIST. <13>
 SET IND TO 1.
 PERFORM UNTIL IND = 100
 MOVE 0 TO REF-PURCH-STK(IND)
 MOVE 0 TO TOT(IND)
 SET IND UP BY 1
 END-PERFORM.
 MOVE LIST-PURCHASE TO CUS-HISTORY.

DISPLAY-DETAIL.
 IF IND-DET = 21
 MOVE 0 TO END-DETAIL
 EXIT.
 IF REF-DET-STK(IND-DET) = 0
 MOVE 0 TO END-DETAIL
 ELSE
 DISPLAY REF-DET-STK(IND-DET)
 DISPLAY ORD-QTY(IND-DET)
 SET IND-DET UP BY 1.

16/9/2001

Chapter 10

State of the art and conclusion

10-2 10 • State of the art and conclusion

 J-L Hainaut 2001 16/9/2001

Though reverse engineering data structures still is a complex task, it appears that the current
state of the art provides us with sufficiently powerful concepts and techniques to make this
enterprise more realistic.
The literature proposes systematic approaches for database schema recovering:
• RE of standard files: [Casanova 1983], [Casanova 1984], [Nillson 1985], [Davis 1985],

[Sabanis 1992], [Hainaut 1993b], [Edwards 1995]
• RE of IMS databases: [Navathe 1988], [Winans 1990], [Batini 1992], [Hainaut 1993b],

[Fong 1993]
• RE of TOTAL/IMAGE databases: [Hainaut 1993b]
• RE of CODASYL databases: [Batini 1992], [Hainaut 1993b], [Fong 1993], [Edwards

1995]
• RE of relational databases: [Casanova 1984], [Navathe 1988], [Davis 1988], [Johannes-

son 1990], [Markowitz 1990], [Springsteel 1990], [Kalman 1991], [Fonkam 1992],
[Batini 1992], [Premerlani 1993], [Chiang 1993], [Campbell 1994], [Chiang 1994],
[Shoval 1993], [Hainaut 1993b], [Petit 1994], [Andersson 1994], [Signore 1994], [Ver-
meer 1995], [Comyn 1996], [Chiang 1996].

• RE of OO databases: [Hainaut 1997b], [Theodoros 1998].

Most of these studies appear to be limited in scope, and are generally based on assumptions
on the quality and completeness of the source data structures to reverse engineer that cannot
be relied on in many practical situations. For instance, they often suppose that,
• all the conceptual specifications have been translated into data structures and constraints

(at least until 1993),
• the translation is rather straightforward (no tricky representations); for instance, a rela-

tional schema often is supposed to be in 4NF; [Premerlani 1993] is one of the first pro-
posals that cope with some non trivial representations;

• the schema has not been deeply restructured for performance objectives or for any other
requirements,

• a complete physical schema of the data is available,
• names have been chosen rationally (e.g., a foreign key and the referenced primary key

have the same name).

In many proposals, the only databases processable are those that have been obtained by a ri-
gourous database design method. This condition cannot be assumed for most large operation-
al databases, particularly for the oldest ones. Moreover, these proposals are most often
dedicated to one data model and do not attempt to elaborate techniques and reasonings com-
mon to several models, leaving the question of a general DBRE approach unanswered. Since
1993, some authors recognize that the procedural part of the application programs is an es-
sential source of information on the data structures [Joris 1992], [Hainaut 1993a], [Petit
1994], [Andersson 1994], [Signore 1994].
The list of references mentioned above is far from complete and is likely to include some

10-3

16/9/2001  J-L Hainaut 2001

near-duplicate papers. Nevertheless, it makes clear that the research emphasis has been put
toward reverse engineering relational databases (Figure 10-1). A bit surprisingly, the most
important needs expressed by the industry and the administrations concern IMS, COBOL and
CODASYL legacy systems.

Figure 10-1: Distribution of selected research publications according to the DMS model.

Many reverse engineering problems are now identified. However, solving them in every pos-
sible situation is a goal that is far from being reached. In addition, some problems still remain
to be worked out. We briefly discuss some of them.
• Though DBRE seems to be sufficiently mature to consider the development of tools and

training practitioners, coping with the application as a whole is still an unsolved prob-
lem. Indeed, due to the much larger variety of problems and the lower level of formality
of practical software engineering, reverse engineering of the procedural components of a
large application still is impossible. Moreover, the very meaning of the term reverse
engineering seems to be different in the database and software comunities. While DBRE
aims at recovering the complete abstract specification of an operational component, soft-
ware reverse engineering seeks for more modest goals forming the program understand-
ing domain, still far from recovering the complete abstract specification of the programs.
It is clear that DBRE can contribute to program understanding, but the link between them
still is to be developed.

• The economics of DBRE is a critical point for which there is no clear proposals so far.
In particular, we do not know at the present time how to evaluate the cost of a DBRE
project and when to stop a DBRE project, either because we have got enough informa-
tion or because it proves too costly.

• Reengineering, migrating, reusing and converting system components include the
reverse engineering of the existing system. We know how to perform reverse engineer-
ing, but there is no clear procedure to carry out the former operations.

• In the early times of DBRE, defining general purpose algorithms and procedures which
one could automatically apply was the ultimate goal. It should be clear now that this

files hierarchical networkshallow relational

17.5% 12.5%
2.5%

10%

52.5%

5%

OO

10-4 10 • State of the art and conclusion

 J-L Hainaut 2001 16/9/2001

goal cannot be achieved but in very simple situations that are seldom observed in the real
world. Unfortunately, current CASE tools still are based on this assumption, and offer
little more than SQL code Extractors and elementary foreign key to relationship type
converters. According to their users, their main contribution is that of a mere graphical
schema editor.

• Many engineering processes that include reverse engineering lead to code production.
System conversion, data conversion, system integration and component wrapping are
some examples. As shown in Section 2.2, all the activities carried out to build higher
level abstractions from the operational code can be completely formalized as specifica-
tions transformations. Recording these operations as a history of the DBRE activities
provides us with a formal trace of the process. From this trace, one can derive the
reverse and forward mappings between the operational code and the conceptual specifi-
cations, and, as a consequence, one can automatically generate the various procedures
implementing the engineering processes mentioned above. Much work still remains to be
done in this direction1.

About OO reverse engineering
It would be unconceivable to close a presentation on database reverse engineering without a
discussion on reverse engineering toward OO specifications. The topic is important, since it
makes it possible to include legacy databases into modern distributed object architectures,
which is a most promising way of reengineering these valuable assets inherited from the past.
So far, the term OO reverse engineering has been given two distinct interpretations, namely
building an OO description of a standard application and building/recovering an OO de-
scription of an OO application. The second kind of problems has been briefly discussed in
Section 7.6. We will tell some words on the first one, according to which a standard (typically
3GL) application is analyzed in order to build an OO description of its data objects and of as
much as possible of its procedural components. There is a strong trend toward the OO con-
version of standard (typically 3GL) applications. Typically, they are analyzed in order to
build an OO description of their data objects and of as many as possible parts of their proce-
dural components. A typical overview of a reverse engineering project following this ap-
proach consists in finding potential object classes and their basic methods. For example, a
COBOL business application based on files CUSTOMER, ITEM and ORDER will be given
a description comprising Customer, Item and Order classes, with their associated methods
such as RegisterCustomer, DropCustomer, ChangeAddress, SendInvoice, etc. The initial
idea is quite simple [Sneed 1996]:

• each record type implements an object class and each record field represents a class
attribute;

• the creation, destruction and updating methods (e.g. RegisterCustomer, DropCus-

1. One of the goals of the InterDB project is to develop a DB-MAIN co-processor that automatically
generates wrapped data components from DBRE histories [Thiran 1998].

10-5

16/9/2001  J-L Hainaut 2001

tomer, ChangeAddress) can be discovered by extracted and reordering the procedural
sections that manage the source records;

• the application methods (e.g. SendInvoice) can be extracted by searching the code for
the functional modules.

This idea has been supported by much research effort in the last years [Jacobson 1991] [Gall
1995], [Sneed 1995], [Yeh 1995], [Newcomb 1995]. Unfortunately, it proved much more dif-
ficult to implement than originally expected. Indeed, the process of code analysis must take
into account complex patterns such as near-duplication (near-identical code sections dupli-
cated throughout the programs [Baker 1995]), interleaving (a single code section used by sev-
eral execution flows [Rugaber 1995]) and runtime-determined control structures (e.g.
dynamically changing the target of a goto statement or dynamic SQL). Some authors even
propose, in some situations, to leave the code aside, and to reuse the data only [Sneed 1996b],
among others through wrapping techniques based on the CORBA model. In addition many
extracted modules appear to cope with the management of several record types, i.e. with more
than one potential object class. This latter problem forces the analyst to make arbitrary choic-
es, to deeply restructure the code, or to resort to some heuristics [Penteado 1996].
Several code analysis techniques have been proposed to examine the static and dynamic re-
lationships between statements and data structures. Dataflow graphs, dependency graphs and
program slicing are among the most popular. In particular, the concept of program slicing
seems to be the ultimate solution to locate the potential methods of the record/classes of a pro-
gram.

7/11/2004

Chapter 11

References

11-2 11 • References

 J-L Hainaut 2001 7/11/2004

[Aiken 1996] Aiken, P. 1996. Data Reverse Engineering, McGraw-Hill.
[Andersson 1994] Andersson, M. 1994. Extracting an Entity Relationship Schema from a

Relational Database through Reverse Engineering, in Proc. of the 13th Int.
Conf. on ER Approach, Manchester, Springer-Verlag

[Baker 1995] Baker, B. 1995. On Finding Duplication and Near-Duplication in Large
Software Systems. Proc. of the 2nd IEEE Working Conf. on Reverse Enginee-
ring, Toronto, July 1995, IEEE Computer Society Press.

[Batini 1992] Batini, C., Ceri, S., Navathe, S. 1992. Conceptual Database Design - An En-
tity-Relationship Approach, Benjamin/Cummings

[Batini 1993] Batini, C., Di Battista, G., Santucci, G. 1993. Structuring Primitives for a Dic-
tionary of Entity Relationship Data Schemas, IEEE TSE, Vol. 19, No. 4

[Bitton 1989] Bitton, D., Millman, J., Torgersen, S. 1989. A Feasibility and Performance
Study of Dependency Inference, in Proc. IEEE Data Engineering Conferen-
ce, Los Angeles.

[Blaha 1995] Blaha, M.R., Premerlani, W., J. 1995. Observed Idiosyncracies of Relational
Database designs, in Proc. of the 2nd IEEE Working Conf. on Reverse Engi-
neering, Toronto, July 1995, IEEE Computer Society Press

[Blaha 1996] Blaha, M. 1996. A Catalog of Object Model Transformations, in Proc. of the
3rd Working Conference on Reverse Engineering (WCRE'96), Monterey,
Nov. 8-10, 1996, IEEE Computer Society Press

[Blaha 1998] Blaha, M., Premerlani, W. 1998. Object-Oriented Modeling and Design for
Database Applications, Prentice Hall

[Blaha 1998b] Blaha, M., 1998. On Reverse Engineering of Vendor Databases, in Proc. of
the 5th IEEE Working Conf. on Reverse Engineering, Honolulu, October
1998, IEEE Computer Society Press

[Bolois 1994] Bolois, G., Robillard, P. 1994. Transformations in Reengineering Techni-
ques, in Proc. of the 4th Reengineering Forum "Reengineering in Practice",
Victoria, Canada

[Brodie 1995] Brodie, M., Stonebraker, M. 1995. Migrating Legacy Systems, Morgan Kauf-
mann.

[Campbell 1994] Campbell, L., Halpin, T. 1994. The reverse engineering of relational data-
bases, in Proc. 6th Int. Work. on CASE (1994).

[Casanova 1983] Casanova, M., Amarel de Sa, J. 1983. Designing Entity Relationship Sche-
mas for Conventional Information Systems, in Proc. of Entity-Relationship
Approach, pp. 265-278

[Casanova 1984] Casanova, M., A., Amaral De Sa. 1984. Mapping uninterpreted Schemes
into Entity-Relationship diagrams: two applications to conceptual schema de-
sign, in IBM J. Res. & Develop., Vol. 28, No 1

11-3

7/11/2004  J-L Hainaut 2001

[Celko 1995] Celko, J. 1995. SQL for Smarties: Advanced SQL Programming, Morgan
Kaufmann.

[Chiang 1993] Chiang, R., H., Barron, T., M., Storey, V., C. 1993. Performance evaluation
of reverse engineering relational databases into Extended ER models, in Proc.
of the 12th Conf. on ERA (1993)

[Chiang 1994] Chiang, R., H., Barron, T., M., Storey, V., C. 1994. Reverse Engineering of
Relational Databases : Extraction of an EER model from a relational database,
Journ. of Data and Knowledge Engineering, Vol. 12, No. 2 (March 1994),
pp107-142

[Chiang 1996] Chiang, R., H., Barron, T., M., Storey, V., C. 1996. A framework for the de-
sign and evaluation of reverse engineering methods for relational databases,
Data and Knowledge Engineering, Vol. 21, No. 1 (December 1996)

[Chikofski 1990] Chikofski, E., Cross J. II. 1990. Reverse Engineering and design recovery:
A taxonomy, IEEE Software, Jan. 1990

[Choobineh 1988] Choobineh, J. et al. 1988. An Expert Database Design System based on
Analysis of Forms, IEEE Trans. on Software Engineering, 4, 2, Feb. 1988.

[Comyn 1996] Comyn-Wattiau, I., Akoka, J. 1996. Reverse Engineering of Relational Data-
base Physical Schema, in Proc. 15th Int. Conf. on Conceptual Modeling
(ERA), Cottbus, LNCS 1157, Springer Verlag

[D'Atri 1984] D'Atri, A., Sacca, D. 1984. Equivalence and Mapping of Database Schemes,
in Proc. 10th VLDB conf., Singapore

[Davis 1985] Davis, K., H., Arora, A., K. 1985. A Methodology for Translating a Conven-
tional File System into an Entity-Relationship Model, in Proc. of ERA, IEEE/
North-Holland

[Davis 1988] Davis, K., H., Arora, A., K. 1988. Converting a Relational Database model to
an Entity Relationship Model, in Proc. of Entity-Relationship Approach: a
Bridge to the User, 1988

[De Troyer 1993] De Troyer, O. 1993. On data schema transformation, PhD Thesis, Univer-
sity of Tilburg, Tilburg, The Netherlands

[Edwards 1995] Edwards, H., M., Munro, M. 1995. Deriving a Logical Model for a System
Using Recast Method, in Proc. of the 2nd IEEE WC on Reverse Engineering,
Toronto, IEEE Computer Society Press

[Elmasri 1997] Elmasri, R., Navathe, S. 1997. Fundamentals of Database Systems, Benja-
min-Cummings

[Fahrner 1995] Fahrner, C., Vossen, G. 1995. A survey of database design transformations
based on the Entity-Relationship model, Data Knowledge Eng. 15:3

[Fong 1994] Fong, J., Ho, M. 1994. Knowledge-based Approach for Abstracting Hierar-
chical and Network Schema Semantics, in Proc. of the 12th Int. Conf. on ER
Approach, Arlington-Dallas, Springer-Verlag

11-4 11 • References

 J-L Hainaut 2001 7/11/2004

[Fonkam 1992] Fonkam, M., M., Gray, W., A. 1992. An approach to Eliciting the Semantics
of Relational Databases, in Proc. of 4th Int. Conf. on Advance Information
Systems Engineering - CAiSE'92, pp. 463-480, Springer-Verlag, 1992

[Gall 1995] Gall, H., Klosch, R. 1995. Finding Objects in Procedural Programs: An Alter-
native Approach, in Proc. of the 2nd Working Conference on Reverse Engi-
neering (WCRE'95), Toronto, July 14-16, 1995, IEEE Computer Society
Press

[Geller 1989] Geller, J., R. 1989. IMS, Administration, Programming and Data Base Desi-
gn, Wiley

[Hall 1992] Hall, P., A. (Ed.). 1992. Software Reuse and Reverse Engineering in Practice,
Chapman&Hall.

[Hainaut 1981] Hainaut, J-L. 1981. Theoretical and practical tools for data base design, in
Proc. of the Very Large Databases Conf., pp. 216-224, September, 1981

[Hainaut 1989] Hainaut, J.-L. 1989. A Generic Entity-Relationship Model, in Proc. of the
IFIP WG 8.1 Conf. on Information System Concepts: an in-depth analysis,
North-Holland

[Hainaut 1992]Hainaut, J-L., Cadelli, M., Decuyper, B., Marchand, O. 1992. Database
CASE Tool Architecture: Principles for Flexible Design Strategies, in Proc.
of the 4th Int. Conf. on Advanced Information System Engineering (CAiSE-
92), Manchester, May 1992, Springer-Verlag, LNCS

[Hainaut 1993a] Hainaut, J-L., Chandelon M., Tonneau C., Joris M. 1993a. Contribution to
a Theory of Database Reverse Engineering, in Proc. of the IEEE Working
Conf. on Reverse Engineering, Baltimore, May 1993

[Hainaut 1993b] Hainaut, J-L, Chandelon M., Tonneau C., Joris M. 1993b. Transformational
techniques for database reverse engineering, in Proc. of the 12th Int. Conf. on
ER Approach, Arlington-Dallas, E/R Institute and Springer-Verlag, LNCS

[Hainaut 1994] Hainaut, J-L, Englebert, V., Henrard, J., Hick J-M., Roland, D. 1994. Evolu-
tion of database Applications: the DB-MAIN Approach, in Proc. of the 13th
Int. Conf. on ER Approach, Manchester, Springer-Verlag

[Hainaut 1995a] Hainaut, J-L. 1995a. Requirements for Information System Reverse Engi-
neering Support, in Proc. of the 2nd IEEE Working Conf. on Reverse Engi-
neering, Toronto, July 1995, IEEE Computer Society Press

[Hainaut 1995b] Hainaut, J-L. 1995b. Database Reverse Engineering - Problems, Methods
and Tools, Tutorial notes, CAiSEl95, Jyväskylä, Finland, May. 1995 (availa-
ble at jlh@info.fundp.ac.be)

[Hainaut 1996] Hainaut, J.-L., Hick, J.-M., Englebert, V., Henrard, J., Roland, D. 1996. Un-
derstanding implementations of IS-A Relations, in Proc. of the conference on
the ER Approach, Cottbus, Oct. 1996, LNCS, Springer-Verlag

11-5

7/11/2004  J-L Hainaut 2001

[Hainaut 1996a] Hainaut, J-L, Henrard, J., Roland, D., Englebert, V., Hick J-M. 1996. Struc-
ture Elicitation in Database Reverse Engineering, Proc. of the IEEE Working
Conf. on Reverse Engineering, Monterey, Nov. 1996, IEEE Computer So-
ciety Press

[Hainaut 1996b] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J., Englebert, V. 1996. Data-
base Reverse Engineering: from Requirements to CARE tools, Journal of
Automated Software Engineering, Vol. 3, No. 1 (1996).

[Hainaut 1996c] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J., Englebert, V. 1996b. Da-
tabase design recovery, in Proc. of CAiSEl96, Springer-Verlag, 1996

[Hainaut 1997]Hainaut, J-L. Hick, J-M., Henrard, J., Roland, D. and Englebert, V. 1997.
Knowledge Transfer in Database Reverse Engineering - A supporting Case
Study, in Proc. of the 4th IEEE Working Conf. on Reverse Engineering, Ams-
terdam, October 1997, IEEE Computer Society Press

[Hainaut 1997bHainaut, J-L., Henrard, J., Hick, J-M., Roland, D., Englebert, V. 1997. Con-
tribution to the Reverse Engineering of OO Applications - Methodology and
Case Study, in Proc. of the IFIP 2.6 WC on Database Semantics (DS-7), Ley-
sin (CH), Oct. 1997, Chapman-Hall

[Halpin 1995] Halpin, T., A., Proper, H., A. 1995. Database schema transformation and op-
timization, Proc. of the 14th Int. Conf. on ER/OO Modelling (ERA)

[Henrard 1998]Henrard, J., Roland, D., Englebert, V., Hick, J-M., Hainaut, J-L. 1998. Pro-
gram Understanding in Databases Reverse Engineering, in Proc. of the 9th
Int. Conf. on Databases and Expert Systems Applications (DEXA'98), Vien-
na, June 1998, Springer-Verlag

[IEEE 1990] Special issue on Reverse Engineering, IEEE Software, January, 1990
[Jacobson 1991] Jacobson, I., Lindström, F. 1991 Re-engineering of old systems to an object-

oriented architecture, in Proc of OOPSLA'91, pp.340-350

[Jajodia 1983] Jajodia, S., Ng, P., A., Springsteel, F., N. 1983. The problem of Equivalence
for Entity-Relationship Diagrams, IEEE Trans. on Soft. Eng., SE-9, 5

[Johannesson 1990] Johannesson, P., Kalman, K. 1990. A Method for Translating Relational
Schemas into Conceptual Schemas, in Proc. of the 8th ERA conference, To-
ronto, North-Holland,

[Joris 1992] Joris, M., Van Hoe, R., Hainaut, J-L., Chandelon M., Tonneau C., Bodart F.
et al. 1992. PHENIX: methods and tools for database reverse engineering, in
Proc. 5th Int. Conf. on Software Engineering and Applications, Toulouse, De-
cember 1992, EC2 Publish.

[Kalman 1991]Kalman, K. 1991. Implementation and critique of an algorithm which maps a
relational database to a conceptual model, in Proc. of the CAiSE•91 confer-
ence.

11-6 11 • References

 J-L Hainaut 2001 7/11/2004

[Kobayashi 1986]Kobayashi, I. 1986. Losslessness and Semantic Correctness of Database
Schema Transformation: another look of Schema Equivalence, Information
Systems, Vol. 11, No 1, pp. 41-59

[Lien 1982] Lien, Y., E. 1982. On the equivalence of database models, JACM, 29, 2

[Markowitz 1990]Markowitz, K., M., Makowsky, J., A. 1990. Identifying Extended Entity-
Relationship Object Structures in Relational Schemas, IEEE Trans. on
Software Engineering, Vol. 16, No. 8

[Metaxides 1975] Metaxides, A. 1975. "Information bearing" and "non-information bearing"
sets, in Data Base Description, Proc. of the IFIP TC2 Work. Conf., Douqué
& Nijssen (Ed.), North-Holland

[Mfourga 1997] Mfourga, N. 1997. Extracting Entity-Relationship Schemas from Relational
Databases: A Form-Driven Approach, in Proc. of the 4th Working Conference
on Reverse Engineering (WCRE'97), Amsterdam, Oct. 1997, IEEE Computer
Society Press

[Navathe 1980]Navathe, S., B. 1980. Schema Analysis for Database Restructuring, ACM
TODS, Vol.5, No.2

[Navathe 1988] Navathe, S., B., Awong, A. 1988. Abstracting Relational and Hierarchical
Data with a Semantic Data Model, in Proc. of Entity-Relationship Approach:
a Bridge to the User

[Newcomb 1995]Newcomb P. et al. 1995. Reengineering Procedural Into Object-Oriented
Systems, in Proc. of the 2nd Working Conference on Reverse Engineering
(WCRE'95), Toronto, July 14-16, 1995, IEEE Computer Society Press

[Nilsson 1985] Nilsson,E., G. 1985. The Translation of COBOL Data Structure to an Entity-
Rel-type Conceptual Schema, in Proc. of ERA Conference, IEEE/North-Hol-
land,

[Penteado 1996]Penteado, R.D., Germano, F.S.R. and Masiero, P.C. 1996. An Overall Pro-
cess Based on Fusion to Reverse Engineering Legacy Code, in Proc. of the
3rd IEEE Working Conf. on Reverse Engineering, Monterey, Nov. 1996,
IEEE Computer Society Press.

[Petit 1994] Petit, J-M., Kouloumdjian, J., Bouliaut, J-F., Toumani, F. 1994. Using Que-
ries to Improve Database Reverse Engineering, in Proc. of the 13th Int. Conf.
on ER Approach, Manchester, Springer-Verlag

[Premerlani 1993] Premerlani, W., J., Blaha, M.R. 1993. An Approach for Reverse Enginee-
ring of Relational Databases, in Proc. of the IEEE Working Conf. on Reverse
Engineering, IEEE Computer Society Press

[Rauh 1995] Rauh, O., Stickel, E. 1995. Standard Transformations for the Normalization
of ER Schemata, Proc. of the CAiSE•95 Conf., Jyväskylä, Finland, LNCS,
Springer-Verlag

11-7

7/11/2004  J-L Hainaut 2001

[Rock 1990] Rock-Evans, R. 1990. Reverse Engineering: Markets, Methods and Tools,
OVUM report

[Rosenthal 1988]Rosenthal, A., Reiner, D. 1988. Theoretically sound transformations for
Practical Database Design, in Proc. of the 6th Int. Conf. on Entity-Rela-
tionship Approach, March (Ed.), North-Holland

[Rosenthal 1994]Rosenthal, A., Reiner, D. 1994. Tools and Transformations - Rigorous and
Otherwise - for Practical Database Design, ACM TODS, Vol. 19, No. 2

[Rugaber 1995]Rugaber, S., Stirewalt, K. and Wills, L. 1995. The Interleaving Problem in
Program Understanding. in Proc. of the 2nd IEEE Working Conf. on Reverse
Engineering, Toronto, July. 1995, IEEE Computer Society Press.

[Sabanis 1992] Sabanis, N., Stevenson, N. 1992. Tools and Techniques for Data Remodelling
Cobol Applications, in Proc. 5th Int. Conf. on Software Engineering and Ap-
plications, Toulouse, 7-11 December, pp. 517-529, EC2 Publish.

[Selfridge 1993] Selfridge, P., G., Waters, R., C., Chikofsky, E., J. 1993. Challenges to the
Field of Reverse Engineering, in Proc. of the 1st WC on Reverse Engineering,
pp.144-150, IEEE Computer Society Press

[Shoval 1993] Shoval, P., Shreiber, N. 1993. Database Reverse Engineering : from Relatio-
nal to the Binary Relationship Model, Data and Knowledge Engineering, Vol.
10, No. 10

[Signore 1994] Signore, O, Loffredo, M., Gregori, M., Cima, M. 1994. Reconstruction of ER
Schema from Database Applications: a Cognitive Approach, in Proc. of the
13th Int. Conf. on ER Approach, Manchester, Springer-Verlag

[Signore 1994b] Signore, O, Loffredo, M., Gregori, M., Cima, M. 1994. Using procedural
patterns in abstracting relational schemata, in Proc. IEEE 3rd Workshop on
Program Comprehension

[Sneed 1995] Sneed, H.M. and Nyáry. 1995. Extracting Object-Oriented Specification from
Procedurally Oriented Programs. in Proc. of the 2nd IEEE Working Conf. on
Reverse Engineering, Toronto, July. 1995, IEEE Computer Society Press.

[Sneed 1996] Sneed, H.S. 1996. Object-Oriented COBOL Recycling. Proc. of the 3rd IEEE
Working Conf. on Reverse Engineering, Monterey, Nov. 1996, IEEE Compu-
ter Society Press.

[Sneed 1996b] Sneed, H.S. 1996b. Encapsulating Legacy Software for Use in Client/Server
Systems. in Proc. of the 3rd IEEE Working Conf. on Reverse Engineering,
Monterey, Nov. 1996, IEEE Computer Society Press.

[Springsteel 1990] Springsteel, F., N., Kou, C. 1990. Reverse Data Engineering of E-R desi-
gned Relational schemas, in Proc. of Databases, Parallel Architectures and
their Applications, March, 1990

[Teorey 1994] Teorey, T. J. 1994. Database Modeling and Design: the Fundamental Prin-
ciples, Morgan Kaufman

11-8 11 • References

 J-L Hainaut 2001 7/11/2004

[Theodoros 1998] Theodoros, L., Edwards, H., Bryant, A. 1998. ROMEO: Reverse Enginee-
ring from OO Source Code to OMT Design, in Proc. of the 5th IEEE Working
Conf. on Reverse Engineering, Honolulu, October 1998, IEEE Computer So-
ciety Press

[Thiran 1998] Thiran, Ph., Hainaut, J-L., Bodart, S., Deflorenne, A. 1998. Interoperation of
Independent, Heterogeneous and Distributed Databases. Methodology and
CASE support: the InterDB Approach. in Proc. of the Int. Conference on Coo-
perative Information Systems (CoopIS-98), New-York, August 1998, IEEE
Computer Society Press

[Tsichritzis 1977] Tsichritzis, D., C., Lochovsky, F., H. 1977. Data Base Management Sys-
tems, Academic Press

[Vermeer 1995]Vermeer, M., Apers, P. 1995. Reverse Engineering of Relational Databases,
in Proc. of the 14th Int. Conf. on ER/OO Modelling (ERA)

[Weiser 1984] Weiser, M. 1984. Program Slicing, IEEE TSE, Vol. 10, pp 352-357
[Wills 1995] Wills, L., Newcomb, P., Chikofsky, E., (Eds) 1995. Proc. of the 2nd IEEE

Working Conf. on Reverse Engineering, Toronto, July 1995, IEEE Computer
Society Press

[Winans 1990] Winans, J., Davis, K., H. 1990. Software Reverse Engineering from a Cur-
rently Existing IMS Database to an Entity-Relationship Model, in Proc. of
Entity-Relationship Approach, pp. 345-360, Oct., 1990

[Yeh 1995] Yeh, A. S., Harris, D. R., Reubenstein, H. B. 1995. Recovering Abstract Data
Types and Object Instances from a Conventional Procedural Language, in
Proc. of the 2nd Working Conference on Reverse Engineering (WCRE'95),
Toronto, July 14-16, 1995, IEEE Computer Society Press

11-9

7/11/2004  J-L Hainaut 2001

Others

Laura C. Rivero, Jorge H. Doorn, Viviana E. Ferraggine, Elicitation and conversion of hidden
objects and restrictions in a database schema, Proceedings of the 2002 ACM
symposium on Applied computing, March 2002

 Hee Beng Kuan Tan, Yuan Zhao, Automated elicitation of inclusion dependencies from the
source code for database transactions, Journal of Software Maintenance: Re-
search and Practice, Volume 15 Issue 6, November 2003

Maseud Rahgozar, Farhad Oroumchian, An effective strategy for legacy systems evolution,
Journal of Software Maintenance: Research and Practice, Volume 15 Issue 5,
September 2003

Reda Alhajj, Extracting the extended entity-relationship model from a legacy relational data-
base, Information Systems, Volume 28 Issue 6, September 2003

Pedro Sousa, Lurdes Pedro-de-Jesus, Gonçalo Pereira, Fernando Brito e Abreu, Clustering
relations into abstract ER schemas for database reverse engineering, Science
of Computer Programming, Volume 45 Issue 2-3, November 2002,

Jens H. Jahnke, Wilhelm Schäfer, Jörg P. Wadsack, Albert Zündorf, Supporting iterations in
exploratory database reengineering processesScience of Computer Program-
ming, Volume 45 Issue 2-3, November 2002

Martin Andersson, Extracting an Entity Relationship Schema from a Relational Database
through Reverse Engineering, Proceedings of the13th International Conferen-
ce on the Entity-Relationship Approach, p.403-419, December 13-16, 1994

Ljiljana Stojanovic, Nenad Stojanovic, Raphael Volz, Migrating data-intensive web sites into
the Semantic Web, Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC), March 10-14, 2002, Madrid, Spain. ACM 2002, pp. 1100-
1107

L. Stojanovic, N. Stojanovic, and R. Volz. A reverse engineering approach for migrating
data-intensive web sites to the semantic web. In IIP-2002, August 25-30,
2002, Montreal, Canada (Part of the IFIP World Computer Congress
WCC2002), 2002

Roger H. L. Chiang , Terence M. Barron , Veda C. Storey, Reverse engineering of relational
databases: extraction of an EER model from a relational database, Data &
Knowledge Engineering, v.12 n.2, p.107-142, March 1994

John V. Harrison, Wie Ming Lim, Automated Reverse Engineering of Legacy 4GL Informa-
tion System Applications using the ITOC Workbench, Conference on Advan-
ced Information Systems Engineering 1998

Lim, W.M. and Harrison, J.V., An Integrated Database Re-engineering Architecture - A Ge-
neric Approach, Proc. of Australian Software Engineering Conference, Mel-
bourne, Aug. 1996, pp. 146-154.

11-10 11 • References

 J-L Hainaut 2001 7/11/2004

Engberts, Andre, Kozaczynski, Liongosari, Edy and Ning, J.Q., COBOL/SRE: A COBOL
System Renovation Environment, Proc. of the 6th Intl. Workshop for Compu-
ter-Aided Software Engineering, Ed. H. Lee and Thonas Reid, Singapore,
July 1993, pp. 199-210

[Kalman 1991]Katalin Kalman: Implementation and Critique of an Algorithm which Maps a
Relational Database to a Conceptual Model. 393-415, in [CAiSE 1991]

[Fouqué 1992] Gilles Fouqué, Christel Vrain: Building a Tool for Software Code Analysis:
A Machine Learning Approach. 278-289, in [CAiSE 1992]

[Fonkam 1992]M. M. Fonkam, W. A. Gray: An Approach to Eliciting the Semantics of Re-
lational Databases. 463-480, in [CAiSE 1992]

[Johannesson 1993] Paul Johannesson: Schema Transformations as an Aid in View Integra-
tion. 71-92, in [CAiSE 1993]

[McCormack 1993] J. I. McCormack, Terry A. Halpin, P. R. Ritson: Automated Mapping of
Conceptual Schemas to Relational Schemas. 432-448, in [CAiSE 1993]

[Andonoff 1993] Eric Andonoff: Normalization of Object-Oriented Conceptual Schemes.
449-462, in [CAiSE 1993]

[Rauh 1995] Otto Rauh, Eberhard Stickel: Standard Transformations for the Normaliza-
tion of ER Schemata. 313-326, in [CAiSE 1995]

[Kudrass 1996]Thomas Kudrass, Marco Lehmbach, Alejandro P. Buchmann: Tool-Based
Re-Engineering of a Legacy MIS: An Experience Report. 116-135, in [CAiSE
1995]

[Hainaut 1996]Jean-Luc Hainaut, Jean Henrard, Jan-Marc Hick, Didier Roland, Vincent En-
glebert: Database Design Recovery . 272-300, in [CAiSE 1996]

[Lammari 1996]Nadira Lammari, Regine Laleau, Mireille Jouve, Xavier Castellani: Deri-
ving Normalized Is_a Hierarchies by Using Applicability Constraints. 562-
580, in [CAiSE 1996]

[Harrison 1998] John V. Harrison, Wie Ming Lim: Automated Reverse Engineering of Lega-
cy 4GL Information System Applications Using the ITOC Workbench. 41-57,
in [CAiSE 1998]

[van den Heuvel 1999] Willem-Jan van den Heuvel, Mike P. Papazoglou, Manfred A. Jeus-
feld: Configuring Business Objects from Legacy Systems. 41-56, in [CAiSE
1999]

[Jungfer 1999] Kim Jungfer, Ulf Leser, Patricia Rodriguez-Tomé: Constructing IDL Views
on Relational Databases. 255-268, in [CAiSE 1999]

[McBrien 1999]Peter McBrien, Alexandra Poulovassilis: A Uniform Approach to Inter-mo-
del Transformations. 333-348, in [CAiSE 1999]

