Journal. of Automated Software Engineering, 3(1), Kluwer Acad. Pub.

Database Reverse Engineering : from Requirementsto CARE
tools:

J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland
Institut d'Informatique, University of Namur, rue Grandgagnage, 21 - B-5000 Namur
j 1 h@nfo. fundp. ac. be

Abstract. This paper analyzes the requirements that CASE tools should meet for effective database reverse engineering
(DBRE), and proposes a general architecture for data-centered applications reverse engineering CASE environments.
First, the paper describes a generic DBM S-independent DBRE methodology, then it analyzes the main characteristics of
DBRE activities in order to collect a set of desirable requirements. Finaly, it describes DB-MAIN, an operational
CASE tool developed according to these requirements. The main features of thistool that are described in this paper are
its unique generic specification model, its repository, its transformation toolkit, its user interface, the text processors, the
assistants, the methodological control and its functional extensibility. Finally, the paper describes five real-world
projects in which the methodology and the CASE tool were applied.

K eywor ds: reverse engineering, database engineering, program understanding, methodology, CASE tools

1. Introduction

1.1. The Problem and its Context

Reverse engineering a piece of software consists, among others, in recovering or reconstructing its
functiona and technical specifications, starting mainly from the source text of the programs (IEEE,
90) (Hall, 92) (Wills, 95). Recovering these specifications is generally intended to redocument,
convert, restructure, maintain or extend old applications. It isalso required when developing a Data
Administration function that has to know and record the description of al the information resources
of the company.

The problem is particularly complex with old and ill-designed applications. In this case, not only
can no decent documentation (if any) be relied on, but the lack of systematic methodologies for
designing and maintaining them have led to tricky and obscure code. Therefore, reverse engineering
has long been recognized as a complex, painful and prone-to-failure activity, so much so that it is
simply not undertaken most of the time, leaving huge amounts of invaluable knowledge buried in
the programs, and therefore definitively lost.

In information systems, or data-oriented applications, i.e. in applications whose central component
is a database (or a set of permanent files), the complexity can be broken down by considering that
the files or databases can be reverse engineered (almost) independently of the procedural parts.

This proposition to split the problem in this way can be supported by the following arguments :

1 This paper presents some results of the DB-MAIN project. This project is partially supported by the Région
Wallonne, the European Union, and by a consortium comprising ACEC-OSI (Be), ARIANE-II (Be), Banque UCL
(Lux), BBL (Be), Centre de recherche public H. Tudor (Lux), CGER (Be), Cockerill-Sambre (Be), CONCIS (Fr),
D'leteren (Be), DIGITAL, EDF (Fr), EPFL (CH), Groupe S (Be), IBM, OBLOG Software (Port), ORIGIN (Be), Ville
de Namur (Be), Winterthur (Be), 3 Suisses (Be). The DB-Process subproject is supported by the Communauté
Francaise de Belgique.

08/07/02

- the semantic distance between the so-called conceptual specifications and the physical
implementation is most often narrower for data than for procedural parts;

- the permanent data structures are generally the most stable part of applications,

- even in very old applications, the semantic structures that underlie the file structures are mainly
procedure-independent (though their physical structures are highly procedure-dependent);

- reverse engineering the procedural part of an application is much easier when the semantic
structure of the data has been €licited.

Therefore, concentrating on reverse engineering the data components of the application first can be
much more efficient than trying to cope with the whole application.

The database community considers that there exist two outstanding levels of description of a
database or of a consistent collection of files, materialized into two documents, namely its
conceptual schema and its logical schema. The first one is an abstract, technology-independent,
description of the data, expressed in terms close to the application domain. Conceptual schemas are
expressed in some semantics-representation formalisms such as the ERA, NIAM or OMT models.
The logical schema describes these data translated into the data model of a specific data manager,
such as a commercial DBMS. A logical schema comprises tables, columns, keys, record types,
segment types and the like.

The primary am of database reverse engineering (DBRE) is to recover possible logica and
conceptual schemas for an existing database.

1.2. Two I ntroductory Examples

The real scope of database reverse engineering has sometimes been misunderstood, and presented as
merely redrawing the data structures of a database into some DBM S-independent formalism. Many
early scientific proposals, and most current CASE tools are limited to the trandation process
illustrated in Figure 1. In such situations, some elementary trandlation rules suffice to produce a
tentative conceptual schema.

create table CUSTOVER (CUSTOMER
CNUM nuneric(6) not null, CNUM
CNAME char (24) not null, CNAME
CADDRESS char (48 not nul |, CADDRESS
primary key (CNUM) 10:CNUM

O-N

create table ORDER (
ONUM char (8) not nul |, |:|
CNUM nuneric(6) not null, 11
ODATE dat e, ORDER
pri mary key (ONUM , 8EX1ME
foreign key (CNUM id: ONUM
ref erences CUSTOMVER)

Figure 1. Anidealistic view of database reverse engineering

Unfortunately, most situations are actually far more complex. In Figure 2, we describe a very small
COBOL fragment from which we intend to extract the semantics underlying the files CFO08 and
PFOS. By merely analyzing the record structure declarations, as most DBRE CASE tools do at the

08/07/02

present time, only schema (a) in Figure 2 can be extracted. It obviously brings little information

about the meaning of the data.

Envi ronnent di vi si on.

I nput - out put section.

File control.

sel ect CF008 assign to DSKO2: P12
organi zation is indexed

record key is Kl of REC CF008-1.

sel ect PFOS assign to DSKO02: P27
organi zation is indexed
record key is Kl of REC PFCS-1.

Dat a di vi sion.
File section.
fd CF008.
01 REC- CF008-1.
02 K1 pic 9(6).
02 filler pic X(125).

fd PFOS.
01 REC- PFOS-1.
02 K1
03 K11 pic X(9).
03 filler pic 9(6)

02 PDATA pic X(180).
02 PRDATA redefines PDATA.

03 filler pic 9(4)Vo9.

Wor ki ng storage section.
01 | N- COVPANY.
02 CPY-ID pic 9(6).
02 C- DATA pic X(125).

01 CPY- DATA.
02 CNAME pic X(25).
02 CADDRESS pi ¢ X(100).

01 PKEY.
02 K11 pic X(9).
02 K12 pic X(6).

Procedure division.

nove zeroes to PKEY.
display "Enter ID:"
accept K11l of PKEY.
nove PKEY to K1 of REC-PFOS-1.
read PFOS key K1 on invalid key
di splay "Invalid Product |ID
di spl ay PDATA wi th no advanci ng.

wi th no advanci ng.

read PFOS.
performuntil K11 of K1 > K11 of PKEY
di splay "Production:" with no advancing
di spl ay PRDATA with no advanci ng
display " tons by " with no advancing
nove K1 of REC- PFOS-1 to PKEY
nove K12 of PKEY to K1 of REC-CF008-1
read CFO08 into | N COVPANY
not invalid key
nove C- DATA to CPY- DATA
di spl ay CNAME of CPY-DATA
end- r ead.
read next PFOS
end- perform

[]

PRODUCT

PRO-ID
PNAME
CATEGORY

id:PRO-ID

COMPANY
CPY-ID
REC-CF008-1| | REC-PF0S-1 CNAME
K1 K1 CADDRESS
filler K11 id:CPY-ID
id:K1 filler
PDATA[0-1]
PRDATA[0-1]
filler
id:K1
excl:PDATA
PRDATA
@

PRODUCTION COMPANY

PRODUCT

CPY-ID
CNAME
CADDRESS|

PRO-ID

P-ID
PNAME

PRO-ID
CPY-ID

.~/ PRODUCTION i
ON VOLUME oN

CATEGORY

VOLUME id:CPY-ID

id:PRO-ID

id:P-ID
ref: P-ID.PRO-ID
ref:P-ID.CPY-ID

(b) (©)

Figure 2. A more realistic view of database reverse engineering. Merely analyzing the data structure declaration
statements yields a poor result (a), while further inspection of the procedural code makes it possible to recover a much

more explicit schema (b), which can be expressed as a conceptual schema (c).

08/07/02

However, by analyzing the procedural code, the user-program dialogs, and, if needed, the file
contents, a more expressive schema can be obtained. For instance, schema (b) can be considered as
arefinement of schema (a) resulting from the following reasonings :

- the gross structure of the program suggests that there are two kinds of REC- PFOS- 1 records,
arranged into ordered sequences, each comprising one type-1 record (whose PDATA field is
processed before the loop), followed by an arbitrary sequence of type-2 records (whose PRDATA
field is processed in the body of the loop); all the records of such a sequence share the same first
9 characters of the key;

- the processing of type-1 records shows that the K11 part of key K1 is an identifier, the rest of the
key acting as pure padding; the user dialog suggests that type-1 records describe products; this
record type is called PRODUCT, and its key PRO-ID; visual inspection of the contents of the
PFOS file could confirm this hypothesis;

- examining the screen contents when running the program shows that PDATA is made of a
product name followed by a product category; this interpretation is given by atypical user of the
program; this field can then be considered as the concatenation of a PNAME fileld and a
CATEGORY field.

- the body of the loop processes the sequence of type-2 records depending on the current
PRODUCT record; they all share the PRO-ID value of their parent PRODUCT record, so that
that this 9-digit subfield can be considered as aforeign key to the PRODUCT record,;

- the processing of atype-2 record consists in displaying one line made up of constants and field
values; the linguistic structure of this line suggests that it informs us about some Production of
the current product; the PDATA value is expressed in tons (most probably a volume), and seems
to be produced by some kind of agents described in the file CFO08; hence the names
PRODUCTION for type-2 record type and VOLUME for the PRDATA field;

- the agent of a production is obtained by using the second part of the key of the PRODUCTION
record; therefore, this second part can be considered as a foreign key to the REC-CF008-1
records;

- the name of the field in which the agent record is stored suggests that the latter is a company;
hence the name COMPANY for this record type, and CPY-ID for its access key;

- the C-DATA field of the COMPANY record type should match the structure of the CPY-DATA
variable, which in turn is decomposed into CNAME and CADDRESS.

Refining the initial schema (&) these reasonings result in schema (b), and interpreting these technical
data structures into a semantic information model (here some variant of the Entity-relationship
model) leads to schema (c).

Despite its small size, this exercise emphasizes some common difficulties of database reverse
engineering. In particular, it shows that the declarative statements that define file and record
structures can prove a poor source of information. The analyst must often rely on the inspection of
other aspects of the application, such as the procedural code, the user-program interaction, the
program behaviour, the file contents. This example aso illustrates the weaknesses of most data
managers which, together with some common programming practices that tend to hide important
structures, force the programmer to express essential data properties through procedural code.
Finally domain knowledge proves essential to discover and to validate some components of the
resulting schema.

08/07/02

1.3. State of the Art

Though reverse engineering data structures is still a complex task, it appears that the current state of
the art provides us with concepts and techniques powerful enough to make this enterprise more
realistic.

The literature proposes systematic approaches for database schema recovery :

- for standard files : (Casanova, 83), (Nillson, 85), (Davis, 85), (Sabanis, 92)

- for IMS databases : (Navathe, 88), (Winans, 90), (Batini, 92), (Fong, 93)

- for CODASYL databases: (Batini, 92), (Fong, 93), (Edwards, 95)

- for relational databases : (Casanova, 84), (Navathe, 88), (Davis, 88), (Johan, 89), (Markowitz,
90), (Springsted, 90), (Fonkam, 92), (Batini, 92), (Premerlani, 93), (Chiang, 94), (Shoval, 93),
(Petit, 94), (Andersson, 94), (Signore, 94), (Vermeer, 95).

Many of these studies, however, appear to be limited in scope, and are generaly based on
assumptions about the quality and completeness of the source data structures to be reverse
engineered that cannot be relied on in many practical situations. For instance, they often suppose
that

- all the conceptual specifications have been transated into data structures and constraints (at least
until 1993); in particular, constraints that have been procedurally expressed are ignored,

- the trandation is rather straightforward (no tricky representations); for instance, a relational
schema is often supposed to be in 4NF2; (Premerlani, 93) and (Blaha, 95) are among the only
proposals that cope with some non trivial representations, or idiosyncrasies, observed in red
world applications; let us mention some of them : nullable primary key attributes, almost unique
primary keys, denormalized structures, degradation of inheritance, mismatched referentia
integrity domains, overloaded attributes, contradictory data;

- the schema has not been deeply restructured for performance objectives or for any other
requirements; for instance, record fragmentation or merging for disc space or access time
minimization will remain undetected and will be propagated to the conceptual schema;

- acomplete and up-to-date DDL schema of the datais available;

- names have been chosen rationaly (e.g. a foreign key and the referenced primary key have the
same name), so that they can be used as reliable definition of the objects they denote.

In many proposals, it appears that the only databases that can be processed are those that have been
obtained by a rigourous database design method. This condition cannot be assumed for most large
operational databases, particularly for the oldest ones. Moreover, these proposals are most often
dedicated to one data model and do not attempt to elaborate techniques and reasonings common to
severa models, leaving the question of a general DBRE approach still unanswered.

Since 1992, some authors have recognized that the procedural part of the application programsis an
essential source of information on data structures (Joris, 92), (Hainaut, 93a), (Petit, 94), (Andersson,
94), (Signore, 94).

Like any complex process, DBRE cannot be successful without the support of adequate tools called
CARE tools3. An increasing number of commercial products (claim to) offer DBRE functionalities.

2 A tableisin 4NF iff all the non-trivial multivalued dependencies are functional. The BCNF (Boyce-Codd normal
form) is weaker but has a more handy definition : atable isin BCNF iff each functional determinant is akey.

3 A CASE tool offering a rich toolset for reverse engineering is often called a CARE (Computer-Aided Reverse
Engineering) tool.

08/07/02

Though they ignore many of the most difficult aspects of the problem, those tools provide their
users with invaluable help to carry out DBRE more effectively (Rock-Evans, 90).

In (Hainaut, 93a), we proposed the theoretical baselines for a generic, DBM S-independent, DBRE
methodology. These baselines have been developed and extended in (Hainaut, 93b) and (Hainaut,
94). The current paper trangates these principles into practical requirements DBRE CARE tools
should meet, and presents the main aspects and components of a CASE tool dedicated to database
applications engineering, and more specifically to database reverse engineering.

1.4. About this paper

The paper is organized as follows. Section 2 is a synthesis of the main problems which occur in
practical DBRE, and of a generic DBMS-independent DBRE methodology. Section 3 discusses
some important requirements which should be satisfied by future DBRE CARE tools. Section 4
briefly presents a prototype DBRE CASE tool which isintended to address these requirements. The
following sections describe in further detail some of the original principles and components of this
CASE tool : the specification model and the repository (Section 5), the transformation toolkit
Section 6), the user interface (Section 7), the text analyzers and name processor (Section 8), the
assistants (Section 9), functional extensibility (Section 10) and methodological control (Section 11).
Section 12 evaluates to what extent the tool meets the requirements while Section 13 describes
some real world applications of the methodology and of the tool.

The reader is assumed to have some basic knowledge of data management and design. Recent
references (Elmasri, 94) and (Date, 94) are suggested for data management, while (Batini, 92) and
(Teorey, 94) are recommended for database design.

2. A Generic Methodology for Database Rever se Engineering (DBRE)

The problems that arise when recovering the documentation of the data naturally fall in two
categories that are addressed by the two major processes in DBRE, namely data structure extraction
and data structure conceptualization ((Joris, 92), (Sabanis, 92), (Hainaut, 93a)). By naturally, we
mean that these problems relate to the recovery of two different schemas, and that they require quite
different concepts, reasonings and tools. In addition, each of these processes grossly appears as the
reverse of a standard database design process (resp. physical and logical design (Teorey, 94)
(Batini, 92)). We will describe briefly these processes and the problems they try to solve. Let us
mention however, that partitioning the problems in this way is not proposed by many authors, who
prefer proceeding in one step only. In addition, other important processes are ignored in this
discussion for ssimplicity (see (Joris, 92) for instance).

This methodology is generic in two ways. First, its architecture and its processes are largely DMS-
independent. Secondly, it specifies what problems have to be solved, and in which way, rather than
the order in which the actions must be carried out. Its genera architecture, as developed in
(Hainaut, 93a), isoutlined in Figure 3.

08/07/02

DM S-compliant
optimized schema

Normalized
conceptual schema
! \
CONCEPTUAL SCHEMA
NORMALIZATION INTEGRATION
=
& o DATA [|
E Raw conceptual E ANALYSIS
- schema %
= T
L]
d PROGRAM
' = ANALYSIS —
E SCHEMA g
B DE-OPTIMIZATION A
) 4
=z o DMS-DDL text ||
8 E ANALYSIS
Conceptual-logical
2 () E -physical schema A
Lo |
g — DMS-DDL
R SCHEMA schema
B | UNTRANSLATION
= Physical
8 schema
SCHEMA
PREPARATION
Programs
A
Data

DM S-compliant
optimized schema

Figure 3. Main components of the generic DBRE methodology. Quite naturally, this reverse methodology is to be read
fromright to left, and bottom-up !

2.1 Data Structure Extraction

This phase consists in recovering the complete DM S* schema, including all the implicit and explicit
structures and constraints. True database systems generaly supply, in some readable and
processable form, a description of this schema (data dictionary contents, DDL texts, etc). Though
essential information may be missing from this schema, the latter is arich starting point that can be
refined through further analysis of the other components of the application (views, subschemas,
screen and report layouts, procedures, fragments of documentation, database content, program
execution, etc).

The problem is much more complex for standard files, for which no computerized description of
their structure exist in most cases®. The analysis of each source program provides a partial view of
the file and record structures only. For most real-world (i.e. non academic) applications, this

4 A Data Management System (DMS) is either a File Management System (FMS) or a Database Management System
(DBMS).

5 Though some practices (e.g., disciplined use of COPY or INCLUDE meta-statements to include common data
structure descriptions in programs), and some tools (such as data dictionaries) may simulate such centralized schemas.

08/07/02

analysis must go well beyond the mere detection of the record structures declared in the programs.
In particular, three problems are encountered, that derive from frequent design practices, namely
structure hiding, non declarative structures and lost specifications. Unfortunately, these practices
are also common in (true) databases, i.e. those controlled by DBMS, as illustrated by (Premerlani,
93) and (Blaha, 95) for relational databases.

Structure hiding applies to a source data structure or constraint S1, which could be implemented in
the DMS. It consists in declaring it as another data structure S2 that is more general and less
expressive than S1, but that satisfies other requirements such as field reusability, genericity,
program conciseness, simplicity or efficiency. Let us mention some examples @ a
compound/multivalued field in a record type is declared as a single-valued atomic field, a sequence
of contiguous fields are merged into a single anonymous field (e.g. as an unnamed COBOL field), a
one-to-many relationship type is implemented as a many-to-many link, areferential constraint is not
explicitly declared as aforeign key, but is procedurally checked, arelationship typeis represented by
aforeign key (e.g. in IMS and CODASY L databases).

Non declarative structures are structures or constraints which cannot be declared in the target
DMS and therefore are represented and checked by other means, such as procedural sections of the
application. Most often, the checking sections are not centralized, but are distributed and duplicated
(frequently in different versions), throughout the application programs. Referential integrity in
standard files and one-to-one relationship typesin CODASY L databases are some examples.

L ost specifications are constructs of the conceptual schema that have not been implemented in the
DMS data structures nor in the application programs. This does not mean that the data themselves
do not satisfy the lost constraint, but the trace of its enforcement cannot be found in the declared
data structures nor in the application programs. Let us mention popular examples : uniqueness
constraints on sequential files and secondary keysin IMS and CODASY L databases.

Recovering hidden, non declarative and lost specifications is a complex problem, for which no
deterministic methods exist so far. A careful analysis of the procedural statements of the programs,
of the data flow through local variables and files, of the file contents, of program inputs and outputs,
of the user interfaces, of the organizational rules, can accumulate evidence for these specifications.
Most often, that evidence must be consolidated by the domain knowledge.

Until very recently, these problems have not triggered much interest in the literature. The first
proposals address the recovery of integrity constraints (mainly referential and inclusion) in relational
databases through the analysis of SQL queries (Petit, 94), (Andersson, 94), (Signore, 94).

In our generic methodology, the main processes of DATA STRUCTURE EXTRACTION are the
following :

« DMS-DDL text ANALYSIS. This rather straighforward process consists in analyzing the data
structures declaration statements (in the specific DDL) included in the schema scripts and
application programs. It produces afirst-cut logical schema.

* PROGRAM ANALYSIS. This process is much more complex. It consistsin analyzing the other
parts of the application programs, a.o0. the procedural sections, in order to detect evidence of
additional data structures and integrity constraints. The first-cut schema can therefore be refined
following the detection of hidden, non declarative structures.

« DATA ANALYSIS. This refinement process examines the contents of the files and databases in
order (1) to detect data structures and properties (e.g. to find the unique fields or the functional

6 There is no miracle here : for instance, the data are imported, or organizational and behavioural rules make them
satisfy these constraints.

08/07/02

dependencies in afile), and (2) to test hypotheses (e.g. "could this field be a foreign key to this
file?"). Hidden, non declarative and lost structures can be found in this way.

« SCHEMA INTEGRATION. When more than one information source has been processed, the
analyst is provided with several, generaly different, extracted (and possibly refined) schemas.
Let us mention some common situations : base tables and views (RDBMS), DBD and PSB
(IMS), schema and subschemas (CODASYL), file structures from all the application programs
(standard files), etc. The final logical schema must include the specifications of all these partial
views, through a schema integration process.

The end product of this phase is the complete logical schema. This schema is expressed according
to the specific model of the DMS, and still includes possible optimized constructs, hence its name :
the DMS-compliant optimized schema, or DMS schema for short.

The current DBRE CARE tools offer only limited DMS-DDL text ANALYS S functionalities. The
analyst is left without help as far as PROGRAM ANALYSS, DATA ANALYSS and SCHEMA
INTEGRATION processes are concerned. The DB-MAIN tool is intended to address all these
processes and to improve the support that analysts are entitled to expect from CARE tools.

2.2 Data Structure Conceptualization

This second phase addresses the conceptual interpretation of the DMS schema. It consists for
instance in detecting and transforming or discarding non-conceptual structures, redundancies,
technical optimization and DM S-dependent constructs. It consists of two sub-processes, namely
Basic conceptualization and Conceptual normalization. The reader will find in (Hainaut, 93b) a
more detailed description of these processes, which rely heavily on schema restructuring techniques
(or schema transformations).

« BASIC CONCEPTUALIZATION. The main objective of this process is to extract all the
relevant semantic concepts underlying the logical schema. Two different problems, requiring
different reasonings and methods, have to be solved : schema untranslation and schema de-
optimization. However, before tackling these problems, we often have to prepare the schema by
cleaning it.

SCHEMA PREPARATION. The schema still includes some constructs, such as files and access
keys, which may have been useful in the Data Structure Extraction phase, but which can now be
discarded. In addition, trandating names to make them more meaningful (e.g. substitute the file
name for the record name), and restructuring some parts of the schema can prove useful before
trying to interpret them.

SCHEMA UNTRANSLATION. The logical schema is the technical trandation of conceptual
constructs. Through this process, the anayst identifies the traces of such trandations, and
replaces them by their origina conceptual construct. Though each data model can be assigned its
own set of trandating (and therefore of untrandating) rules, two facts are worth mentioning.
First, the data models can share an important subset of translating rules (e.g. COBOL files and
SQL structures). Secondly, translation rules considered as specific to a data model are often used
in other data models (e.g. foreign keysin IMS and CODASY L databases). Hence the importance
of generic approaches and tools.

SCHEMA DE-OPTIMIZATION. The logical schemais searched for traces of constructs designed
for optimization purposes. Three main families of optimization techniques should be considered
- denormalization, structural redundancy and restructuring (Hainaut, 93b).

08/07/02

10

* CONCEPTUAL NORMALIZATION. This process restructures the basic conceptual schema in
order to give it the desired qualities one expects from any final conceptual schema, eg.
expressiveness, simplicity, minimality, readability, genericity, extensibility. For instance, some
entity types are replaced by relationship types or by attributes, is-a relations are made explicit,
names are standardized, etc. This process is borrowed from standard DB design methodologies
(Batini, 92), (Teorey, 94), (Rauh, 95).

All the proposals published so far address this phase, most often for specific DMS, and for rather
simple schemas (e.g. with no implementation tricks). They generally propose elementary rules and
heuristics for the SCHEMA UNTRANSLATION process and to some extent for CONCEPTUAL
NORMALIZATION, but not for the more complex DE-OPTIMIZATION phase. The DB-MAIN
CARE tool has been designed to address all these processesin aflexible way.

2.3 Summary of the Limits of the State of the Art in CARE Tools

The methodological framework developed in Sections 2.1 and 2.2 can be specialized according to a
specific DMS and according to specific development standards. For instance (Hainaut, 93b)
suggests specialized versions of the CONCEPTUALIZATION phase for SQL, COBOL, IMS,
CODASYL and TOTAL/IMAGE databases.

It is interesting to use this framework as a reference process model against which existing
methodol ogies can be compared, in particular, those which underlie the current CARE tools (Figure
4). The conclusions can be summarized as follows::

 DATA STRUCTURE EXTRACTION : current CARE tools are limited to parsing DMS-DDL
schemas only (DMS- DDL t ext ANALYSI S). All the other sources are ignored, and must be
processed manualy. For instance, these tools are unable to collect the multiple views of a
COBOL application, and to integrate them to produce the global COBOL schema. A user of a
popular CARE tool tells us "how he spent several weeks, cutting and pasting hundreds of
sections of programs, to build an artificial COBOL program in which all the files and records
were fully described. Only then was the tool able to extract the file data structures’.

e DATA STRUCTURE CONCEPTUALIZATION : current CARE tools focus mainly on
untrandation (SCHEMA UNTRANSLATI ON) and offer some restructuring facilities
(CONCEPTUAL NORMALI ZATI ON), though these processes often are merged. Once again,
some strong naming conventions must often be satisfied for the tools to help. For instance, a
foreign key and the referenced primary key must have the same names. All performance-
oriented constructs, as well as most non standard database structures, (see (Premerlani, 93) and
(Blaha, 95) for instance) are completely beyond the scope of these tools.

08/07/02

11

Normalized
conceptual schema
I

CONCEPTUAL
NORMALIZATION

Conceptual-logical
schema

SCHEMA *

UNTRANS_ATION
DMS-DDL
A schema
DM S-compliant
optimized schema

Figure 4. Simplified DBRE methodology proposed by most current CARE tools.

DM S-compliant
optimized schema

DMS-DDL text
ANALYSIS

DEe
EETRACTIOH

D8
COHCEFTUALIZ ATIOH

3. Requirementsfor a DBRE CARE Tool

This section states some of the most important requirements an ideal DBRE support environment
(or CARE tool) should meet. These requirements are induced by the analysis of the specific
characteristics of the DBRE processes. They aso derive from reverse engineering files and
databases, often by hand or with very basic text editing tools, of a dozen actual applications.

Flexibility
Observation : The very nature of the RE activities differs from that of more standard engineering
activities. Reverse engineering a software component, and particularly a database, is basically an
exploratory and often unstructured activity. Some important aspects of higher level

specifications are discovered (sometimes by chance), and not deterministically inferred from the
operational ones.

Requirements : The tool must allow the user to follow flexible working patterns, including
unstructured ones. It should be methodology-neutral” unlike forward engineering tools. In
addition, it must be highly interactive.

Extensibility

Observation : RE appears as a learning process; each RE project often is a new problem of its
own, requiring specific reasonings and techniques.

Requirements : Specific functions should be easy to develop, even for one-shot use.

7 But methodology-aware if design recovery is intended. This aspect has been developed in [Hai,94], and will be
evoked in section 11.

08/07/02

12

Sour ce multiplicity

Observation : RE requires agreat variety of information sources : data structure, data (from files,
databases, spreadsheets, etc), program text, program execution, program output, screen layout,
CASE repository and Data dictionary contents, paper or computer-based documentation,
interview, workflow and dataflow analysis, domain knowledge, etc.

Requirements : The tool must include browsing and querying interfaces with these sources.
Customizable functions for automatic and assisted specification extraction should be available
for each of them.

Text analysis

Observation : More particularly, database RE requires browsing through huge amounts of text,
searching them for specific patterns (e.g. programming clichés (Selfridge, 93)), following static
execution paths and dataflows, extracting program slices (Weizer, 84).

Requirements : The CARE tool must provide sophisticated text analysis processors. The latter
should be language independent, easy to customize and to program, and tightly coupled with the
specification processing functions.

Name processing
Observation : Object names in the operational code are an important knowledge source.
Frustratingly enough, these names often happen to be meaningless (e.g. REC-001-R08, 1-087), or
at least less informative than expected (e.g. INV-QTY, QOH, C-DATA), due to the use of strict
naming conventions. Many applications are multilingual8, so that data names may be expressed
in several languages. In addition, multi-programmer development often induces non consistent
naming conventions.

Requirements : The tool must include sophisticated name analysis and processing functions.

Linkswith other CASE processes

Observation : RE is seldom an independent activity. For instance, (1) forward engineering
projects frequently include reverse engineering of some existing components, (2) reverse
engineering share important processes with forward engineering (e.g. conceptual normalization),
(3) reverse engineering is amagor activity in broader processes such as migration, reengineering
and data administration.

Requirements : A CARE tool must offer alarge set of functions, including those which pertain to
forward engineering.

Openness

Observation : There is (and probably will be) no available tool that can satisfy all corporate
needs in application engineering. In addition, companies usualy already make use of one or,
most often, several CA SE tools, software development environments, DBMS, 4GL or DDS.

Requirements : A CARE tool must communicate easily with the other development tools (e.g.
via integration hooks, communications with a common repository or by exchanging
specifications through a common format).

8 For instance, Belgium commonly uses three legal languages, namely Dutch, French and German. As a consequence,
Englishis often used as a de facto common language.

08/07/02

13

Flexible specification model

Observation : Asin any CAD activity, RE applies on incomplete and inconsistent specifications.
However, one of its characteristics makes it intrinsically different from design processes : at any
time, the current specifications may include components from different abstraction levels. For
instance, a schema in process can include record types (physical objects) as well as entity types
(conceptua objects).

Requirements : The specification model must be wide-spectrum, and provides artifacts for
components of different abstraction levels.

Genericity
Observation : Tricks and implementation techniques specific to some data models have been
found to be used in other data models as well (e.g. foreign keys are frequent in IMS and
CODASYL databases). Therefore, many RE reasonings and techniques are common to the
different data models used by current applications.

Requirements : The specification model and the basic techniques offered by the tool must be
DM S-independent, and therefore highly generic.

Multiplicity of views
Observation : The specifications, whatever their abstraction level (e.g. physical, logica or

conceptual), are most often huge and complex, and need to be examined and browsed through in
several ways, according to the nature of the information one tries to obtain.

Requirements : The CARE tool must provide several ways of viewing both source texts and
abstract structures (e.g. schemas). Multiple textual and graphical views, summary and fine-
grained presentations must be available.

Rich transformation toolset

Observation : Actual database schemas may include constructs intended to represent conceptual
structures and constraints in non standard ways, and to satisfy non functional requirements
(performance, distribution, modularity, access control, etc). These constructs are obtained
through schema restructuration techniques.

Requirements : The CARE tool must provide arich set of schema transformation techniques. In
particular, this set must include operators which can undo the transformations commonly used in
practical database designs.

Traceability

Observation : A DBRE project includes at least three sets of documents : the operational
descriptions (e.g. DDL texts, source program texts), the logical schema (DM S-compliant) and the
conceptual schema (DM S-independent). The forward and backward mappings between these
specifications must be precisely recorded. The forward mapping specifies how each conceptual
(or logical) construct has been implemented into the operationa (or logical) specifications, while
the backward mapping indicates of which conceptual (or logical) construct each operationa (or
logical) construct is an implementation.

Requirements : The repository of the CARE tool must record all the links between the schemas at
the different levels of abstraction. More generaly, the tool must ensure the traceability of the RE
processes.

08/07/02

14

4. TheDB-MAIN CASE Tool

The DB-MAIN database engineering environment isaresult of aR & D project initiated in 1993 by
the DB research unit of the Institute of Informatics, University of Namur. This tool is dedicated to
database applications engineering, and its scope encompasses, but is much broader than, reverse
engineering alone. In particular, its ultimate objective is to assist developers in database design
(including full control of logical and physical processes), database reverse engineering, database
application reengineering, maintenance, migration and evolution. Further detail on the whole
approach can be found in (Hainaut, 94).

As far as DBRE support is concerned, the DB-MAIN CASE tool has been designed to address as
much as possible the requirements developed in the previous section.

As a wide-scope CASE tool, DB-MAIN includes the usua functions needed in database analysis
and design, e.g. entry, browsing, management, validation and transformation of specifications, as
well as code and report generation. However, the rest of this paper, namely Sections 5 to 11, will
concentrate only on the main aspects and components of the tool which are directly related to DBRE
activities. In Section 5 we describe the way schemas and other specifications are represented in the
repository. The tool is based on a general purpose transformational approach which is described in
Section 6. Viewing the specifications from different angles and in different formats is discussed in
Section 7. In Section 8, various tools dedicated to text and name processing and anaysis are
described. Section 9 presents some expert modules, called assistant, which help the analyst in
complex processing and analysis tasks. DB-MAIN is an extensible tool which allows its users to
build new functions through the Voyager-2 tool development language (Section 10). Finally,
Section 11 evokes some aspects of the tool dedicated to methodological customization, control and
guidance.

In Section 12, we will reexamine the requirements described in Section 3, and evaluate to what
extent the DB-MAIN tool meets them.

5. TheDB-MAIN Specification Model and Repository

The repository collects and maintains al the information related to a project. We will limit the
presentation to the data aspects only. Though they have strong links with the data structures in
DBRE, the specification of the other aspects of the applications, e.g. processing, will be ignored in
this paper. The repository comprises three classes of information :

- astructured collection of schemas and texts used and produced in the project,
- the specification of the methodology followed to conduct the project,
- the history (or trace) of the project.

We will ignore the two latter classes, which are related to methodological control and which will be
evoked briefly in Section 11.

A schema is a description of the data structures to be processed, while atext is any textual materia
generated or analyzed during the project (e.g. a program or an SQL script). A project usually
comprises many (i.e. dozens to hundreds of) schemas. The schemas of a project are linked through
specific relationships; they pertain to the methodological control aspects of the DB-MAIN
approach, and will be ignored in this section.

08/07/02

15

PRODUCT ORDER CUSTOMER
PROD-ID ORD-ID CUST-ID
NAME DATE NAME
U-PRICE ORIGIN ADDRESS
id: PROD-ID DETAIL[1-20] id: CUST-ID

PRO ‘
QTY 0-N
id: ORD-ID o
acc
acc |
ref: DETAIL[*].PRO ACCOUNT
ACC-NBR
AMOUNT
T e e | id: ACC-NBR
DSK:MGT-03 | of CUSTOMER

Figure 5. A typical data structure schema during reverse engineering. This schema includes conceptualized objects
(PRODUCT, CUSTOMER, ACCOUNT, of), logical objects (record type ORDER, with single-valued and multivalued
foreign keys) and physical objects (access keys ORDER.ORD-ID and ORDER.ORIGIN; file DSK:MGT-03)

A schema is made up of specification constructs which can be classified into the usual three
abstraction levels. The DB-MAIN specification model includes the following concepts (Hainaut,
92a).

The conceptual constructs are intended to describe abstract, machine-independent, semantic
structures. They include the notions of entity types (with/without attributes; with/without
identifiers), of super/subtype hierarchies (single/multiple inheritance, total and digoint properties),
and of relationship types (binary/N-ary; cyclic/acyclic), whose roles are characterized by min-max
cardinalities and optional names; arole can be defined on one or several entity-types. Attributes can
be associated with entity and relationship types; they can be single-valued or multivalued, atomic or
compound. Identifiers (or keys), made up of attributes and/or roles, can be associated with an entity
type, a relationship type and a multivalued attribute. Various constraints can be defined on these
objects : inclusion, exclusion, coexistence, at-least-one, etc.

The logical constructs are used to describe schemas compliant with DMS models, such as
relational, CODASYL or IMS schemas. They comprise, among others, the concepts of record types
(or table, segment, etc), fields (or columns), referential constraints, and redundancy.

The physical constructs describe implementation aspects of the data which are related to such
criteria as the performance of the database. They make it possible to specify files, access keys
(index, calc key, etc), physical data types, bag and list multivalued attributes, and other
implementation details.

In database engineering, as discussed in Section 2, a schema describes a fragment of the data
structures at a given level of abstraction. In reverse engineering, an in progress schema may even
include constructs at different levels of abstraction. Figure 5 presents a schema which includes
conceptual, logical and physical constructs. Ultimately, this schema will be completely
conceptualized through the interpretation of the logical and physical objects.

Besides these concepts, the repository includes some generic objects which can be customized
according to specific needs. In addition, annotations can be associated with each object. These
annotations can include semi-formal properties, made of the property name and its value, which can
be interpreted by Voyager-2 functions (see Section 10). These features provide dynamic
extensibility of the repository. For instance, new concepts such as organizational units, servers, or
geographic sites can be represented by specializing the generic objects, while statistics about entity

08/07/02

16

populations, the gender and plural of the object names can be represented by semi-formal attributes.
The contents of the repository can be expressed as a pure text file through the ISL language, which
provides import-export facilities between DB-MAIN and its environment.

6. TheTransformation Toolkit

The desirability of the transformational approach to software engineering is now widely recognized.
According to (Fickas, 85) for instance, the process of developing a program [can be] formalized as
a set of transformations. This approach has been put forward in database engineering by an
increasing number of authors since several years, either in research papers, or in text books and,
more recently, in several CASE tools (Hainaut, 92a) (Rosenthal, 94). Quite naturally, schema
transformations have found their way into DBRE as well (Hainaut, 93a) (Hainaut, 93b). The
transformational approach is the cornerstone of the DB-MAIN approach (Hainaut, 81) (Hainaut,
91a) (Hainaut, 93b) (Hainaut, 94) and CASE tool (Hainaut, 92a) (Joris, 92) (Hainaut, 94). A
formal presentation of this concept can be found in (Hainaut, 91a), (Hainaut, 95) and (Hainaut, 96).

Roughly speaking, a schema transformation consists in deriving a target schema S from a source
schema S by some kind of local or global modification. Adding an attribute to an entity type,
deleting a relationship type, and replacing a relationship type by an equivalent entity type, are three
examples of schema transformations. Producing a database schema from another schema can be
carried out through selected transformations. For instance, normalizing a schema, optimizing a
schema, producing an SQL database or COBOL files, or reverse engineering standard files and
CODASYL databases can be described mostly as sequences of schema transformations. Some
authors propose schema transformations for selected design activities (Navathe, 80) (K obayashi, 86)
(Kozaczynsky, 87) (Rosenthal, 88) (Batini, 92) (Rauh, 95) (Halpin, 95). Moreover, some authors
claim that the whole database design process, together with other related activities, can be described
as a chain of schema transformations (Batini, 93) (Hainaut, 93b) (Rosenthal, 94). Schema
transformations are essential to define formally forward and backward mappings between schemas,
and particularly between conceptual structures and DM S constructs (i.e. traceability).

A specia class of transformations is of particular importance, namely the semantics-preserving
transformations, aso called reversible since each of them is associated with another semantics-
preserving transformation called its inverse. Such a transformation ensures that the source and
target schemas have the same semantic descriptive power. In other words any situation of the
application domain that can be modelled by an instance of one schema can be described by an
instance of the other. If we can produce arelational schema from a conceptual schema by applying
reversible transformations only, then both schemas will be equivalent by construction, and no
semantics will be lost in the trandation process. Conversely, if the interpretation of a relational
schema, i.e. its conceptualization (Section 2.2), can be performed by using reversible
transformations, the resulting conceptual schema will be semantically equivalent to the source
schema. An in-depth discussion of the concept of specification preservation can be found in
(Hainaut, 95) and (Hainaut, 96).

To illustrate this concept, we will outline informally three of the most popular transformation
techniques, called mutations (type changing) used in database design. As a consequence, their
inverse will be used in reverse engineering. To simplify the presentation, each transformation and
its inverse are described in one figure, in which the direct transformation is read from left to right,
and itsinverse from right to left.

08/07/02

17

Figure 6 shows graphically how arelationship type can be replaced by an equivalent entity type, and
conversely. The technique can be extended to N-ary relationship types.

.

Il‘-Jl 12-32
< & {re)

| o | :

11-J1 12-32 11— i¢rBB |—11

RA.A

Figure 6. Transforming a relationship type into an entity type, and conversely.

Another widely used transformation replaces a binary relationship type by a foreign key (Figure 7),
which can be either multivalued (J > 1) or single-valued (J = 1).

B
A Bl A B
Al B2 = Al Bl
id: B1 B1[l-J] B2

‘ ref: B[*] — 1 id:B1

\

Figure 7. Relationship-type R is represented by foreign key B1, and conversely.

The third standard technique transforms an attribute into an entity type. It comes in two flavours,
namely instance representation (Figure 8a), in which each instance of attribute A2 in each A entity
is represented by an EA2 entity, and value representation (Figure 8b), in which each distinct value
of A2, whatever the number of itsinstances, is represented by one EA2 entity.

EA2
A
N Q L A2
A " - aaz | (@)
Al RA
AZ[1-]] =4 (b)
A3

Erreur! Signet non défini.

Figure 8. Transformation of an attribute into an entity type : (a) by explicit representation of its instances, (b) by
explicit representation of its distinct values.

DB-MAIN proposes a three-level transformation toolset that can be used freely, according to the
skill of the user and the complexity of the problem to be solved. These tools are neutral and generic,
in that they can be used in any database engineering process. As far as DBRE is concerned, they are
mainly used in the Data Structure Conceptualization (Section 2.2).

08/07/02

18

* Elementary transformations. The selected transformation is applied to the selected object :
applytransfornmationTtocurrent object O

With these tools, the user keeps full control of the schema transformation. Indeed, similar
situations can often be solved by different transformations; e.g. a multivalued attribute can be
transformed in a dozen ways. Figure 9 illustrates the dialog box for the Split/Merge of an entity
type. The current version of DB-MAIN proposes a toolset of about 25 elementary
transformations.

SplittMerge

Split/Merge of entity type BORROWER. [Create entity type and

rel-type]
11 _<|DF |>_ 11
0-1
BORROWER | |CONTACT
PID - PHONE
MAME Add first >> | [ADDRESS
FIRST-MAME -RESPONSIBLE.RESH

rCLOSED-BORROWIN |:Add Mext >>: | [rRESPONSIBLE.BORH
i:BORROWING.BORR

. 3 T :

Figure 9. The dialog box of the Split/Merge transformation through which the analyst can either extract some
components from the master entity type (Ieft), or merge two entity types, or migrate components from an entity type to
another.

» Global transformations. A selected elementary transformation is applied to al the objects of a
schema which satisfy a specified precondition :
applytransformationTtotheobjectsthat satisfyconditionP

DB-MAIN offers some predefined globa transformations, such as : replace all one-to-many
relationship types by foreign keys or replace all multivalued attributes by entity types. However,
the analyst can define its own toolset through the Transformation Assistant described in Section
0.

* Modéd-driven transformations. All the constructs of a schemathat violate a given model M are
transformed in such away that the resulting schema complies with M:
appl ythetransformation plan whi chnakesthecurrent schenmasati sfy nodel M

Such an operator is defined by a transformation plan, which is a sort of algorithm comprising
globa transformations, which is proved (or assumed) to make any schema comply with M. A
model-driven transformation implements formal techniques or heuristics applicable in such major
engineering processes as hormalization, model translation or untranslation, and conceptualization.
Here too, DB-MAIN offers a dozen predefined model-based transformations such as relational,
CODASYL, and COBOL trandation, untransation from these models and conceptual
normalization. The analyst can define its own transformation plans, either through the scripting
facilities of the Transformation Assistant, or, for more complex problems, through the
development of Voyager-2 functions (Section 10).

08/07/02

19

A more detailed discussion of these three transformation modes can be found in (Hainaut, 92a) and
(Hainaut, 95).

7. TheUser Interface

The user interaction uses a fairly standard GUI. However, DB-MAIN offers some origina options
which deserve being discussed.

= DB-MAIN e
File Edit Product New Transform Assist Quick DB Log Yiew Window Help
aERENEEERE
HHEEE RS
+
=| ORD{Graphl - 1= ORD/Extended = ORD{Standard == m
Schema O Sch == .
Eaye— = oo oI
DATE WAME callection DSKMGT-03 / MGT collection DSK:MGT-03 collection DSKMGT-03 - ()
DRIGIN ADDRESE ORDER CUSTOMER
@ ORDID | ot i COSTID CUSTOMER ORDER ORDER
el OBRIGIN UI-N CUSTOMER j
ORDER / ORD [S] ORDER AREOUNT
v in DSKMGT-03 ORDHD
! ORDHD char (12) DATE of
ACCOUNT DATE date [10] ORIGIM T Ad
ACC-NER ; - +
ACCER ORIGIN char (10] id ORD-ID
S ETOIEE id: ORD-D ref : ORIGIN > CUSTOMER.CUSTAD | ||
accNeR (Hl ref: ORIGIN > CUSTOMER.CUSTAD|| cusTOMER B orosocd BB
7 —H| CusTOMER CUST-D = ORD{Sorted |
in DSK-MGT-03 NAME Schel 4]
= i DN CUSTAD char (10
| _ORD{Graphz _| |+ HAME cha [32[]) EPES;TS_ISD ACCHBR At of ACCOUNT |
| DRDER| | CUSI‘DMER| = ADDRESS char [55) ACCOUNT ACCOUMT Entity type
: = by ADDRESS At of CUSTOMER
P id CUSTAD ACCNER
o> role - [0FN]in of AMOUNT ’ELASTU :BT i”‘ °£§Eg?gmﬁ
ACCOUNT id: of CUSTOMER, ACC-NE - t. 0

" ACCNER numeric (6] CUSTOMER Entity typs
ACCODNT AMOUNT numeric [16.2] of g?;_EMGT o Alt. of ORDER

) Collection
+ id: of CUSTOMER, ACC-MER [0-H]: CUSTOMER
« 1 + rals - [1-1]in of [11]: ACCOUNT | EJ;’-\ME :EE;USTDMEH
— o 1 ORD-ID At of DORDER
(ON]: CUSTOMER ORDER Entity type
Froect [1-1]: ACCOUNT | = ORIGIM Alt. of ORDER o
YIEWS <1l + «] + &
| [Size : 198

Figure 10. Six different views of the same schema

Browsing through, processing, and analyzing, large schemas requires an adequate presentation of
the specifications. It quickly appears that more than one way of viewing them is necessary. For
instance, a graphical representation of a schema allows an easy detection of certain structural
patterns, but is useless when analyzing name structures to detect similarities as is common in the
DATA STRUCTURE EXTRACTION process (Section 2.1). DB-MAIN currently offers six ways of
presenting a schema. Four of these views use a hypertext technique : compact (sorted list of entity
type, relationship type and file names), standard (same + attributes, roles and constraints), extended
(same + domains, annotations, ET-RT cross-reference) and sorted (sorted list of all the object

08/07/02

20

names). Two views are graphical : full and compact (no attributes and no constraints). All of them
areillustrated in figure 10.

Switching from one view to another is immediate, and any object selected in a view is still current
when another view is chosen. Any relevant operator can be applied to an object, whatever the view
through which it is presented. In addition, the text-based views makes it possible to navigate from
entity types to relationship types and conversely through hypertext links.

8. Text Analysisand Processing

Anayzing and processing various kinds of texts are basic activities in two specific processes,
namely DVS- DDL t ext ANALYSI S and PROGRAMANALYSI S.

The first process is rather simple, and can be carried out by automatic extractors which analyze the
data structure declaration statements of programs and build the corresponding abstract objects in the
repository. DB-MAIN currently offers built-in standard parsers for COBOL, SQL, CODASYL,
IMS, and RPG, but other parsers can be developed in Voyager-2 (Section 10).

To address the requirements of the second process, through which the preliminary specifications are
refined from evidence found in programs or in other textual sources, DB-MAIN includes a
collection of program analysis tools comprising, at the present time, an interactive pattern-matching
engine, a dataflow diagram inspector and a program slicer. The main objective of these toolsis to
contribute to program understanding as far as data manipulation is concerned.

The pattern-matching function alows searching text files for definite patterns or clichés expressed
in PDL, a Pattern Definition Language. As an illustration, we will describe one of the most popular
heuristics to detect an implicit foreign key in a relational schema. It consists in searching the
application programs for some forms of SQL queries which evoke the presence of an undeclared
foreign key (Signore, 94) (Andersson, 94) (Petit, 94). The principle is simple : most multi-table
gueries use primary/foreign key joins. For instance, considering that column CNUM has been
recognized as a candidate key of table CUSTOMER, the following query suggests that column
CUST in table ORDER may be aforeign key to CUSTOMER :

sel ect CUSTOVER CNUM CNAME, DATE
from ORDER, CUSTOVER
where ORDER. CUST = CUSTOVER. CNUM

More generally, any SQL expression that looks like :

select ...
from ... T1,...T2 ...
where ... T1.Cl = T2.C2 ..

may suggest that C1 isaforeign key to table T2 or C2 aforeign key to T1. Of course, this evidence
would be even stronger if we could prove that C2 - resp. C1 - isakey of itstable. Thisisjust what
Figure 11 translates more formally in PDL.

08/07/02

21

The SQL generic patterns The COBOL/DB2 specific patterns
T1 ::= tabl e-nane AN-nanme ::= [a-zA-Z][-a-zA-Z0-9]
T2 ::= tabl e-nane tabl e-nanme ::= AN nane
Cl ::= col um-nane col um-nane ::= AN nane
C2 ::= col um-nane o= (({"Intp et "+
join-qualif ::= S C A 1 bl I Sl I B B
begi n- SQL begi n-SQ ::= {"exec"|"EXEC'}
sel ect select-list {"sql"|"SQ"}_
from ! {@l! @2 | @2 ! @i} end-SQL ::= _{"end"|"END'}
where ! @il"."@1 _ "=" _ @2"."@2 ! {"-exec"|"-EXEC'}-"."
end- SQL select ::= {"select"|"SELECT"}
from::= {"fron'|"FROM}
where ::= {"where"|"WHERE"}
select-list ::= any-but(from
I ::= any-but ({where| end- SQ.})
(R A R A S R

Figure 11. Generic and specific patterns for foreign key detection in SQL queries. In the specific patterns, " "
designates any non-empty separator, "-" any separator, and "AN-name" any alphanumeric string beginning with a letter.
The "any-but(E)" function identifies any string not including expression E. Symbols "+", "*" "/", "/n", "|" and "aZ"
have their usual grep or BNF meaning.

This exampleillustrates two essential features of PDL and of its engine.

1. A set of patterns can be split into two parts (stored in different files). When a generic pattern file
is opened, the unresolved patterns are to be found in the specified specific pattern file. In this
example, the generic patterns define the skeleton of an SQL query, which is valid for any
RDBMS and any host language, while the specific patterns complement this skeleton by defining
the COBOL/DB2 API conventions. Replacing the latter will allow processing, e.g., C/ORACLE
programs.

2. A pattern can include variables, the name of which is prefixed with @. When such a pattern is
instantiated in a text, the variables are given a value which can be used, e.g., to automatically
update the repository.

The pattern engine can analyze externa source files, as well as textual descriptions stored in the
repository (where, for instance, the extractors store the statements they do not understand, such as
comments, SQL tri gger and check). These texts can be searched for visua inspection only,
but pattern instantiation can aso trigger DB-MAIN actions. For instance, if a procedure such as
that presented in Figure 11 (creation of areferential constraint between column C2 and table T1) is
associated with this pattern, this procedure can be executed automatically (under the analyst's
control) for each instantiation of the pattern. In this way, the analyst can build a powerful custom
tool which detects foreign keys in queries and which adds them to the schema automatically.

The dataflow inspector builds a graph whose nodes are the variables of the program to be analyzed,
and the edges are rel ationships between these variables. These relationships are defined by selected
PDL patterns. For instance, the following COBOL rules can be used to build a graph in which two
nodes are linked if their corresponding variables appear simultaneously in a simple assignment
statement, in aredefinition declaration, in an indirect write statement or in comparisons :

var 1 ::= cob_var;

var_2 ::= cob_var;

08/07/02

22

nmove ::= "MOVE" - @ar_1 - "TO - @ar_2 ;

redefines ::= @ar_1 - "REDEFINES' - @ar_2 ;

wite ::= "WRITE" - @ar_1 - "FROM' @ar_2 ;

if ::="IF" - @ar_1 - rel _op - @ar_2 ;

if _not ::="IF" - @ar_1- "NOT" - rel_op - @ar_2 ;

This tool can be used to solve structure hiding problems such as the decomposition of anonymous
fields and procedurally controlled foreign keys, asillustrated in Figure 2.

The first experiments have quickly taught us that pattern-matching and dataflow inspection work
fine for small programs and for locally concentrated patterns, but can prove difficult to use for large
programs. For instance, a pattern made of a dozen statements can span several thousands lines of
code. With this problem in mind, we have developed a variant of program slicer (Weiser, 84),
which, given a program P, generates a new program P defined as follows. Let us consider apoint S
in P (generally a statement) and an object O (generally a variable) of P. The program dlice of P for
O at Sisthe smallest subset P of P whose execution will give O the same state at S as would the
execution of P in the same environment. Generally P is a very small fragment of P, and can be
inspected much more efficiently and reliably, both visually and with the help of the analysis tools
described above, than its source program P. One application in which this program dlicer has
proved particularly valuable is the analysis of the statements contributing to the state of a record
when it iswritteninitsfile.

DB-MAIN also includes a name processor which can transform selected names in a schema, or in
selected objects of a schema, according to substitution patterns. Here are some examples of such
patterns :

"AC-" -> "CUST-" replaces all prefixes"C- " with the prefix "CUST- ";

"DATE" -> "TIME" replaces each substring "DATE" , whatever its position, with the
substring "TI ME";

"ACODE$" -> "REFERENCE" replaces al the names "CODE" with the new name
"REFERENCE".

In addition, it proposes case transformation : lower-to-upper, upper-to-lower, capitalize and remove
accents. These parameters can be saved as a hame processing script, and reused later.

9. TheAssistants

An assistant is a higher-level solver dedicated to coping with a special kind of problems, or
performing specific activities efficiently. It gives access to the basic toolboxes of DB-MAIN, but in
acontrolled and intelligent way.

The current version of DB-MAIN includes three general purpose assistants which can support,
among others, the DBRE activities, namely the Transformation assistant, the Schema Analysis
assistant and the Text Analysis assistant. These processors offer a collection of built-in functions
that can be enriched by user-defined functions developed in Voyager-2 (Section 10).

The Transformation Assistant (Figure 12) allows applying one or several transformations to selected
objects. Each operation appears as a problem/solution couple, in which the problem is defined by a
pre-condition (e.g. the objects are the many-to-many relationship types of the current schema), and
the solution is an action resulting in eliminating the problem (e.g. transform them into entity types).
Several dozens problem/solution items are proposed. The analyst can select one of them, and
execute it automatically or in a controlled way. Alternatively, (s)he can build a script comprising a
list of operations, executeit, save and load it.

08/07/02

23

= Global transformations
O Entity types into Seript
- * - * Add Remove collections
|Att. entity types |;I|Allnhules |;I | I Referential attributes into rel-types
Rel-t . I Rel. entity types into rel-types

Cl_ SRETES |ntn- ol Attribute entity types into attributes
|B|nary H-H BIlEntll}' types |£I Remove technical descriptions

) Remove all access keys
) 1s-a into
| All |£I| Rel-types |£I
) Attributes into
|Mulli-\ralued |£I|Entily types |£I | Clear I
¢ Groups Al
|1d. >2 comp. [#]/add a technical id [#] [Predefined |
 Miscellaneous Al
|Tech_ descriptions Bllﬂemuve |£I

Save I

VaxAdb/VMS5 4.2 (*
@ Generate | |_| [Confirm
i} Name processing I Ok I | Cancel I

Figure 12. Control panel of the Transformation assistant. The left-side area is the problem solver, which presents a
catalog of problems (1st column) and suggested solutions (2nd column). The right-side area is the script manager. The
worksheet shows a simplified script for conceptualizing relational databases.

Predefined scripts are available to transform any schema according to popular models (e.g.
Bachman model, binary model, relational, CODASYL, standard files), or to perform standard
engineering processes (e.g. conceptualization of relational and COBOL schemas, normalization).
Customized operations can be added via Voyager-2 functions (Section 10). Figure 12 shows the
control panel of this tool. A second generation of the Transformation assistant is under
development. It provides a more flexible approach to build complex transformation plans thanks to
a catalog of more than 200 preconditions, a library of about 50 actions and more powerful scripting
control structures including loops and if-then-else patterns.

The Schema Analysis assistant is dedicated to the structural analysis of schemas. It uses the concept
of submodel, defined as a restriction of the generic specification model described in Section 5
(Hainaut, 92a). This restriction is expressed by a boolean expression of elementary predicates
stating which specification patterns are valid, and which ones are forbidden. An elementary
predicate can specify situations such as the following : "entity types must have from 1 to 100
attributes’, "relationship types have from 2 to 2 roles’, "entity type names are less than 18-character
long", "names do not include spaces’, "no name belongs to a given list of reserved words', "entity
types have from O to 1 supertype”, "the schema is hierarchical”, "there are no access keys'. A
submodel appears as a script which can be saved and loaded. Predefined submodels are available :
Normalized ER, Binary ER, NIAM, Functiona ER, Bachman, Relationa, CODASYL, etc.
Customized predicates can be added via Voyager-2 functions (Section 10). The Schema Analysis
assistant offers two functions, namely Check and Search. Checking a schema consists in detecting
al the constructs which violate the selected submodel, while the Search function detects all the
constructs which comply with the selected submodel.

The Text Analysis assistant presents in an integrated package all the tools dedicated to text anaysis.
In addition it manages the active links between the source texts and the abstract objects in the
repository.

08/07/02

24

10. Functional Extensibility

DB-MAIN provides a set of built-in standard functions that should be sufficient to satisfy most
basic needs in database engineering. However, no CASE tool can meet the requirements of all users
in any possible situation, and specialized operators may be needed to deal with unforeseen or
marginal situations.

o T
reference
@ O-N 0-1

o ref — [aTTRIBUTE |— 19
\ NAME
ENTITY-TYPE TYPE
NAME ON . 0-1| ENGTH
ID

function i nteger MakeForeignKey (string : T1,T2,C1, C2);
expl ai n(*
title="Create a foreign key froman SQ join";
hel p="if ClL is a unique key of table T1 and if C2 is a colum of T2, and if Cl and
C2 are conpatible, then define C2 as a foreign key of T2 to T1, and return true,
el se return fal se"
* .
/*define the variables; any repository object type can be a domain */
schema : S
entity_type : E
attribute : A 1K FK;
list : 1D LIST, FK-LI ST;
{
S := GetCurrent Schema(); /* Sisthecurrentschema */
/* ID-LIST = list of the attributes A such that : (1) A belongsto an entity type E which isin schema Sand whose nameis
T1, (2) the name of Ais C1, (3) Aisan identifier of E (the ID property of Aistrue) */
ID-LIST := attribute[A] {of:entity_ type[E]{l n:[S] and E. NAME = T1}
and A NAME =
and A ID = true},
/* FK-LIST = list of the attributes A such that : (1) A belongsto an entity type E which isin Sand whose nameis T2, (2)
thenameof AisC2 */
FK-LIST := attribute[A] {of:entity_ type[E]{l n:[S] and E. NAME = T2}
and A NAME = C2};
/ * if both lists are not-empty, then
if the attributes are compatible then define the attribute in ID-LIST as a foreign key to the attribute in FK-LIST */
if not(enmpty(ID-LIST) or enpty(FK-LIST)) then
{IK:= GetFirst(IDLIST); FK := GetFirst(FK-LIST);
if K TYPE = FK. TYPE and | K. LENGTH = FK. LENGTH t hen
{connect (reference, | K, FK); return true;}
el se {return false;};}
else {return false;};

Figure 13. A (strongly simplified) excerpt of the repository and a VVoyager-2 function which uses it. The repository
expresses the fact that schemas have entity types, which in turn have attributes. Some attributes can be identifiers
(boolean ID) or can reference (foreign key) another attribute (candidate key). The input arguments of the procedure are
four names T1,T2,C1,C2 such as those resulting from an instantiation of the pattern of Figure 11. The function first
evaluates the possibility of attribute (i.e. column) C2 of entity type (i.e. table) T2 being a foreign key to entity type T1
with identifier (candidate key) C1. If the evaluation is positive, the referential constraint is created. The expl ai n
section illustrates the self-documenting facility of Voyager-2 programs; it defines the answers the compiled version of
this function will provide when queried by the DB-MAIN tool.

There are two important domains in which users require customized extensions, namely additional
internal functions and interfaces with other tools. For instance, analyzing and generating texts in

08/07/02

25

any language and according to any dialect, or importing and exchanging specifications with any
CASE tool or Data Dictionary Systems are practically impossible, even with highly parametric
import/export processors. To cope with such problems, DB-MAIN provides the Voyager-2 tool
development environment alowing analysts to build their own functions, whatever their
complexity. Voyager-2 offers a powerful language in which specific processors can be devel oped
and integrated into DB-MAIN. Basically, Voyager-2 is a procedura language which proposes
primitives to access and modify the repository through predicative or navigational queries, and to
invoke all the basic functions of DB-MAIN. It provides a poweful list manager as well as functions
to parse and generate complex text files. A user's tool developed in Voyager-2 is a program
comprising possible recursive procedures and functions. Once compiled, it can be invoked by DB-
MAIN just like any basic function.

Figure 13 presents a small but powerful Voyager-2 function which validates and creates a referential
constraint with the arguments extracted from a COBOL/SQL program by the pattern defined in
Figure 11. When such a pattern instantiates, the pattern-matching engine passes the values of the
four variables T1, T2, C1 and C2 to the MakeForeignKey function.

11. Methodological Control and Design Recovery®

Though this paper presents it as a CARE tool only, the DB-MAIN environment has a wider scope,
i.e. data-centered applications engineering. In particular, it is to address the complex and critica
problem of application evolution. In this context, understanding how the engineering processes
have been carried out when legacy systems were developed, and guiding today's analysts in
conducting application development, maintenance and reengineering, are mgor functions that
should be offered by the tool. This research domain, known as design (or software) process
modeling, is still under full development, and few results have been made available to practitioners
so far. The reverse engineering process is strongly coupled with these aspectsin three ways.

First, reverse engineering is an engineering activity of its own (Section 2), and therefore is
submitted to rules, techniques and methods, in the same way as forward engineering; it therefore
deserves being supported by methodological control functions of the CARE tool.

Secondly, DBRE is a complex process, based on trial-and-error behaviours. Exploring several
solutions, comparing them, deriving new solutions from earlier dead-end ones, are common
practices. Recording the history of a RE project, analyzing it, completing it with new processes,
and replaying some of its parts, are typical design process modeling objectives.

Thirdly, while the primary aim of reverse engineering is (in short) to recover technica and
functional specifications from the operational code of an existing application, a secondary objective
is progressively emerging, namely to recover the design of the application, i.e. the way the
application has (or could have) been developed. This design includes not only the specifications,
but also the reasonings, the transformations, the hypotheses and the decisions the development
process consists of .

Briefly stated, DB-MAIN proposes a design process model comprising concepts such as design
product, design process, process strategy, decision, hypothesis and rationale. This model derives
from proposals such as those of (Potts, 88) and (Rolland, 93), extended to all database engineering
activities. This model describes quite adequately not only standard design methodologies, such as

9 The part of the DB-MAIN project in charge of this aspect is the DB-Process sub-project, fully supported by the
Communauté Francaise de Belgique.

08/07/02

26

the Conceptual-L ogical-Physical approaches (Teorey, 94) (Batini, 92) but also any kind of heuristic
design behaviour, including those that occur in reverse engineering. We will shortly describe the
elements of this design process model.

Product and product instance. A product instance is any outstanding specification object that can
be identified in the course of a specific design. A conceptual schema, an SQL DDL text, a COBOL
program, an entity type, a table, a collection of user's views, an evaluation report, can all be
considered product instances. Similar product instances are classified into products, such as
Nor mal i zed concept ual schema, DV5- conpl i ant opti m zed schema or DMS- DDL schema
(see Figure 3).

Process and process instance. A process instance is any logical unit of activity which transforms a
product instance into another product instance. Normalizing schema S1 into schema S2 is a process
instance. Similar process instances are classified into processes, such as CONCEPTUAL
NORMALI ZATI ONin Figure 3.

Process strategy. The strategy of a process is the specification of how its goal can be achieved, i.e.
how each instance of the process must be carried out. A strategy may be deterministic, in which
case it reduces to an algorithm (and can often be implemented as a primitive), or it may be non-
deterministic, in which case the exact way in which each of its instances will be carried out is up to
the designer. The strategy of a design process is defined by a script that specifies, anong others,
what lower-level processes must/can be triggered, in what order, and under what conditions. The
control structures in a script include action selection (at most one, one only, at least one, al in any
order, all in this order, at least one any number of times, etc.), alternate actions, iteration, parallel
actions, weak condition (should be satisfied), strong condition (must be satisfied), etc.

Decision, hypothesis and rationale. In many cases, the analyst/developer will carry out an instance
of a process with some hypothesis in mind. This hypothesis is an essential characteristics of this
process instance since it implies the way in which its strategy will be performed. When the engineer
needs to try another hypothesis, (s)he can perform another instance of the same process, generating a
new instance of the same product. After a while (s)he is facing a collection of instances of this
product, from which (s)he wants to choose the best one (according to the requirements that have to
be satisfied). A justification of the decision must be provided. Hypothesis and decision justification
comprise the design rationale.

History. The history of a process instance is the recorded trace of the way in which its strategy has
been carried out, together with the product instances involved and the rationale that has been
formulated. Since a project is an instance of the highest level process, its history collects al the
design activities, al the product instances and all the rationales that have appeared, and will appear,
in the life of the project. The history of a product instance P (also called its design) is the set of all
the process instances, product instances and rationales which contributed to P. For instance, the
design of a database collects al the information needed to describe and explain how the database
cameto bewhat it is.

A specific methodology is described in MDL, the DB-MAIN Methodology Description Language.
The description includes the specification of the products and of the processes the methodology is
made up of, as well as of the relationships between them. A product is of a certain type, described
as a specialization of a generic specification object from the DB-MAIN model (Section 5), and
more precisely as a submodel generated by the Schema analysis assistant (Section 9). For instance,
a product caled Raw concept ual - schema (Figure 3), can be declared as a BINARY-ER-
SCHEMA. The latter is a product type that can be defined by a SCHEMA satisfying the following
predicate, stating that relationship types are binary, and have no attributes, and that the attributes are
atomic and single-valued :

08/07/02

27

(all rel-types have from2 to 2 roles)

and (all rel-types have fromO0 to 0 attributes)

and (all attributes have fromO to O conponents)

and (all attributes have a max cardinality from1l to 1);

A process is defined mainly by the input product type(s), the internal product type, the output
product type(s) and by its strategy.

The DB-MAIN CASE toal is controlled by a methodology engine which is able to interpret such a
method description once it has been stored in the repository by the MDL compiler. In this way, the
tool is customized according to this specific methodology. When developing an application, the
analyst carries out process instances according to chosen hypotheses, and builds product instances.
(S)he makes decisions which (s)he can justify. All the product instances, process instances,
hypotheses, decisions and justifications, related to the engineering of an application make up the
trace, or history of this application development. This history is aso recorded in the repository. It
can be examined, replayed, synthesized, and processed (e.g. for design recovery).

One of the most promising applications of histories is database design recovery. Constructing a
possible design history for an existing, generaly undocumented database is a complex problem
which we propose to tackle in the following way. Reverse engineering the database generates a
DBRE history. This history can be cleaned by removing unnecessary actions. Reversing each of
the actions of this history, then reversing their order, yields a tentative, unstructured, design history.
By normalizing the latter, and by structuring it according to a reference methodology, we can obtain
a possible design history of the database. Replaying this history against the recovered conceptual
schema should produce a physical schemawhich isequivalent to the current database.

A more comprehensive description of how these problems are addressed in the DB-MAIN approach
and CASE tool can be found in (Hainaut, 94), while the design recovery approach is described in
(Hainaut, 96b).

12. DBRE Requirements and the DB-MAIN CASE Tool

We will examine the requirements described in Section 3 to evaluate how the DB-MAIN CASE tool
can help satisfy them.

Flexibility : instead of being constrained by rigid methodological frameworks, the analyst is
provided with a collection of neutral toolsets that can be used to process any schema whatever its
level of abstraction and its degree of completion. In particular, backtracking and multi-hypothesis
exploration are easily performed. However, by customizing the method engine, the analyst can
build a specialized CASE tool that is to enforce strict methodologies, such as that which has been
described in Section 2.

Extensibility : through the Voyager-2 language, the analyst can quickly develop specific functions;
in addition, the assistants, the name and the text analysis processors allows the analyst to develop
customized scripts.

Sources multiplicity : the most common information sources have a text format, and can be
queried and analyzed through the text analysis assistant. Other sources can be processed through
specific Voyager-2 functions. For example, data analysis is most often performed by small ad hoc
queries or application programs, which validate specific hypotheses about, e.g., a possible identifier
or foreign key. Such queries and programs can be generated by Voyager-2 programs that implement
heuristics about the discovery of such concepts. In addition, external information processors and
analyzers can easily introduce specifications through the text-based import-export 1SL language.

08/07/02

28

For example, a simple SQL program can extract SQL specifications from DBMS data dictionaries,
and generate their ISL expression, which can then be imported into the repository.

Text analysis : the DB-MAIN tool offers both general purpose and specific text anayzers and
processors. If needed, other processors can be developed in Voyager-2. Finally, external analyzers
and text processors can be used provided they can generate ISL specifications which can then be
imported in DB-MAIN to update the repository.

Name processing : besides the name processor, specific Voyager-2 functions can be developed to
cope with more specific name patterns or heuristics. Finally, the compact and sorted views can be
used as poweful browsing tools to examine name patterns or to detect similarities.

Links with other CASE processes : DB-MAIN is not dedicated to DBRE only; therefore it
includes in a seamless way supporting functions for the other DB engineering processes, such as
forward engineering. Being neutral, many functions are common to all the engineering processes.

Openness : DB-MAIN supports exchanges with other CASE tools in two ways. First, Voyager-2
programs can be developed (1) to generate specifications in the input language of the other tools,
and (2) to load into the repository the specifications produced by these tools. Secondly, I1SL
specifications can be used as a neutral intermediate language to communicate with other processors.

Flexible specification model : the DB-MAIN repository can accomodate specifications of any
abstraction level, and based on a various paradigms; if asked to be so, DB-MAIN can be fairly
tolerant to incomplete and inconsistent specifications and can represent schemas which include
objects of different levels and of different paradigms (see Figure 5); at the end of a complex process
the analyst can ask, through the Schema Analysis assistant, a precise analysis of the schemato sort
out all the structural flaws.

Genericity : both the repository schema and the functions of the tool are independent of the DMS
and of the programming languages used in the application to be anayzed. They can be used to
model and to process specifications initially expressed in various technologies. DB-MAIN includes
several ways to specialize the generic features in order to make them compliant with a specific
context, such as processing PL/1-IMS, COBOL-VSAM or C-ORACLE applications.

Multiplicity of views : the tool proposes arich palette of presentation layouts both in graphical and
textual formats. In the next version, the analyst will be allowed to define customized views.

Rich transfor mation toolset : DB-MAIN proposes a transformational toolset of more than 25 basic
functions; in addition, other, possibly more complex, transformations can be built by the analyst
through specific scripts, or through Voyager-2 functions.

Traceability : DB-MAIN explicitly records a history, which includes the successive states of the
specifications as well as al the engineering activities performed by the analyst and by the tool itself.
Viewing these activities as specification transformations has proved an elegant way to formalize the
links between the specifications states. In particular, these links can be processed to explain how a
conceptual object has been implemented (forward mapping), and how a technical object has been
interpreted (reverse mapping).

08/07/02

29

13. Implementation and Applications of DB-MAIN

We have developed DB-MAIN in C++ for MS-Windows machines. The repository has been
implemented as an object oriented database. For performance reasons, we have built a specific OO
database manager which provides very short access and update times, and whose disc and core
memory requirements are kept very low. For instance, a fully documented 40,000-object project
can be developed on a8-MB machine.

The first version of DB-MAIN was released in September 1995. It includes the basic processors
and functions required to design, implement and reverse engineer large size databases according to
various DMS. Version 1 supports many of the features that have been described in this paper. Its
repository can accomodate data structure specifications at any abstraction level (Section 5). It
provides a 25-transformation toolkit (Section 6), four textual and two graphical views (Section 7),
parsers for SQL, COBOL, CODASYL, IMS and RPG programs, the PDL pattern-matching engine,
the dataflow graph inspector, the name processor (Section 8), the Transformation, Schema Analysis
and Text Analysis assistants (Section 9), the Voyager-2 virtual machine and compiler (Section 10),
a simple history generator and its replay processor (Section 11). Among the other functions of
Version 1, let us mention code generators for various DMS. Its estimated cost was about 20
man/year.

The DB-MAIN tool has been used to carry out several government and industrial projects. Let us
describe five of them briefly.

* Design of a government agricultural accounting system.

The initial information was found in the notebooks in which the farmers record the day-to-day basic
data. These documents were manually encoded as giant entity types with more than 1850 attributes
and up to 9 decomposition levels. Through conceptualization techniques, these structures were
transformed into pure conceptual schemas of about 90 entity types each. Despite the unusual
context for DBRE, we have followed the general methodology described in Section 2 :

 Data structure extraction : manual encoding; refinement through direct contacts with selected
accounting officers;

« Data structure conceptualization :

- Untrangdlation : the multivalued and compound attributes have been transformed into entity
types; the entity types with identical semantics have been merged; seria attributes, i.e.
attributes with similar names and identical types, have been replaced with multivalued
attributes;

- De-optimization : the farmer is requested to enter the same data at different places; these
redundancies have been detected and removed; the calculated data have been removed as well;

- Normalization : the schema included several implicit IS-A hierarchies, which have been
expressed explicitly;

The cost for encoding, conceptualizing and integrating three notebooks was about 1 person/month.
This rather unusual application of reverse engineering techiques was a very interesting experience
because it proved that data structure engineering is aglobal domain which is difficult (and sterile) to
partition into independent processes (design, reverse). It also proved that there is a strong need for
highly generic CASE tools.

08/07/02

30

» Migrating a hybrid file/SQL social security systeminto a pure SQL database.

Due to a strict disciplined design, the programs were based on rather neat file structures, and used
systematic clichés for integrity constraints management. This fairly standard two-month project
comprised an interesting work on name patterns to discover foreign keys. In addition, the file
structures included complex identifying schemes which were difficult to represent in the DB-MAIN
repository, and which required manual processing.

* Redocumenting the ORACLE repository of an existing OO CASE tool.

Starting from various SQL scripts, partial schemas were extracted, then integrated. The
conceptualization process was fairly easy due to systematic naming conventions for candidate and
foreign keys. In addition, it was performed by a developer having a deep knowledge of the database.
The process was completed in two days.

* Redocumentating a medium size ORACLE hospital database.

The database included about 200 tables and 2,700 columns. The largest table had 75 columns. The
analyst quickly detected a dozen major tables with which one hundred views were associated. It
appeared that these views defined, in a systematic way, a 5-level subtypes hierarchy. Entering the
description of these subtypes by hand would have required an estimated one week. We chose to
build a customized function in PDL and Voyager-2 as follows. A pattern was developed to detect
and analyze the creat e vi ew statements based on the main tables. Each instantiation of this
pattern triggered a Voyager-2 function which defined a subtype with the extracted attributes. Then,
the function scanned these IS-A relations, detected the common attributes, and cleaned the
supertype, removing inherited attributes, and leaving the common ones only. This tool was
developed in 2 days, and its execution took 1 minute. However, a less expert Voyager-2
programmer could have spent more time, so that these figures cannot be generalized reliably. The
total reverse engineering process cost 2 weeks.

» Reverse engineering of an RPG database.

The application was made of 31 flat files comprising 550 fields (2 to 100 fields per file), and 24
programs totalling 30,000 LOC. The reverse engineering process resulted in a conceptual schema
comprising 90 entity types, including 60 subtypes, and 74 relationship types. In the programs, data
validation concentrated in well defined sections. In addition, the programs exhibited complex
access patterns. Obvioudly, the procedural code was a rich source of hidden structures and
constraints. Due to the good quality of this code, the program analysis tools were of little help,
except to quickly locate some statements. In particular, pattern detection could be done visually,
and program dlicing yielded too large program chunks. Only the dataflow inspector was found
useful, though in some programs, this graph was too large, due to the presence of working variables
common to several independent program sections. At that time, no RPG parser was available, so
that a Voyager-2 RPG extractor was developed in about one week. The final conceptual schema
was obtained in 3 weeks. The source file structures were found rather complex. Indeed, some non-
trivial patterns were largely used, such as overlapping foreign keys, conditional foreign and primary
keys, overloaded fields, redundancies (Blaha, 95). Surprisingly, the result was estimated
unnecessarily complex as well, due to the deep type/subtype hierarchy. This hierarchy was reduced
until it seemed more tractable. This problem triggered an interesting discussion about the limit of
this inheritance mechanism. It appeared that the precision vs readability trade-off may lead to
unnormalized conceptual schemas, a conclusion which was often formulated against object class
hierarchies in OO databases, or in OO applications.

08/07/02

31

14. Conclusions

Considering the requirements outlined in Section 3, few (if any) commercial CASE/CARE tools
offer the functions necessary to carry out DBRE of large and complex applications in a really
effective way. In particular, two important weaknesses should be pointed out. Both derive from the
oversimplistic hypotheses about the way the application was developed. First, extracting the data
structures from the operational code is most often limited to the analysis of the data structure
declaration statements. No help is provided for further analyzing, e.g., the procedural sections of the
programs, in which essential additional information can be found. Secondly, the logical schemais
considered as a straighforward conversion of the conceptual schema, according to simple translating
rules such as those found in most textbooks and CASE tools. Consequently, the conceptualization
phase uses simple rules as well. Most actual database structures appear more sophisticated,
however, resulting from the application of non standard translation rules and including sophisticated
performance oriented constructs. Current CARE tools are completely blind to such structures,
which they carefully transmit into the conceptual schema, producing, eg., optimized IMS
conceptual schemas, instead of pure conceptual schemas.

The DB-MAIN CASE tool presented in this paper includes several CARE components which try to
meet the requirements described in Section 3. The first version1® has been used successfully in
severa real size projects. These experiments have also put forward several technical and
methodological problems, which we describe briefly.

» Functional limits of the tool. Though DB-MAIN Version 1 aready offers a reasonable set of
integrity constraints, a more powerful model was often needed to better describe physical data
structures or to express semantic structures. Some useful schema transformations were lacking, and
the scripting facilities of the assistants were found very interesting, but not powerful enough in
some situations. As expected, several users asked for "full program reverse engineering”.

* Problem and tool complexity. Reverse engineering is a software engineering domain based on
specific, and still unstable, concepts and techniques, and in which much remains to learn. Not
surprisingly, true CARE tools are complex, and DB-MAIN is no exception when used at its full
potential. Mastering some of its functions requires intensive training which can be justified for
complex projects only. In addition, writing and testing specific PDL pattern libraries and Voyager-2
functions can cost several weeks.

» Performance. While some components of DB-MAIN proved very efficient when processing
large projects with multiple sources, some others slowed down as the size of the specifications
grew. That was the case when the pattern-matching engine parsed large texts for a dozen patterns,
and for the dataflow graph constructor which uses the former. However, no dramatic improvement
can be expected, due to the intrinsic complexity of pattern-matching algorithms for standard
machine architectures.

* Viewing the specifications. When a source text has been parsed, DB-MAIN builds a first-cut
logical schema. Though the tool proposes automatic graphical layouts, positioning the extracted
objects in a natural way is up to the analyst. Thistask was often considered painful, even on alarge
screen, for schemas comprising a many objects and connections. In the same realm, several users

10 |n order to develop contacts and collaboration, an Education version (complete but limited to small applications) and
its documentation have been made available. This free version can be obtained by contacting the first author at
j 1 h@ nfo. fundp. ac. be.

08/07/02

32

found that the graphical representations were not as attractive as expected for very large schemas,
and that the textual views often proved more powerful and less cumbersome.

The second version, which is under development, will address several of the observed weaknesses
of Version 1, and will include a richer specification model and extended toolsets. We will mainly
mention some important extensions : a view derivation mechanism, which will solve the problem of
mastering large schemas, a view integration processor to build a global schema from extracted
partial views, the first version of the MDL compiler, of the methodology engine, and of the history
manager, and an extended program dlicer. The repository will be extended to the representation of
additional integrity constraints, and of other system components such as programs. A more
powerful version of the Voyager-2 language and a more sophisticated Transformation assistant
(evoked in Section 9) are planned for Version 2 aswell. We also plan to experiment the concept of
design recovery for actual applications.

Acknowledgements

The detailed comments by the anonymous reviewers have been most useful to improve the
readability and the consistency of this paper, and to make it as informative as possible. We also like
to thank Linda Wills for her friendly encouragements.

References

Andersson, M. 1994. Extracting an Entity Relationship Schema from a Relational Database through Reverse
Engineering, in Proc. of the 13th Int. Conf. on ER Approach, Manchester, Springer-Verlag

Batini, C., Ceri, S., Navathe, S., B. 1992. Conceptual Database Design, Benjamin/ Cummings

Batini, C., Di Battista, G., Santucci, G. 1993. Structuring Primitives for a Dictionary of Entity Relationship Data
Schemas, IEEE TSE, Voal. 19, No. 4

Blaha, M.R., Premerlani, W., J. 1995. Observed Idiosyncracies of Relational Database designs, in Proc. of the 2nd
|EEE Working Conf. on Reverse Engineering, Toronto, July 1995, |IEEE Computer Society Press

Bolais, G., Robillard, P. 1994. Transformations in Reengineering Techniques, in Proc. of the 4th Reengineering Forum
"Reengineering in Practice", Victoria, Canada

Casanova, M., Amarel de Sa, J. 1983. Designing Entity Relationship Schemas for Conventional Information Systems, in
Proc. of ERA, pp. 265-278

Casanova, M., A., Amaral De Sa. 1984. Mapping uninterpreted Schemes into Entity-Relationship diagrams : two
applications to conceptual schemadesign, in IBM J. Res. & Develop., Vol. 28, No 1

Chiang, R., H., Barron, T., M., Storey, V., C. 1994. Reverse Engineering of Relational Databases : Extraction of an
EER model from arelational database, Journ. of Data and Knowledge Engineering, Vol. 12, No. 2 (March 94),
ppl07-142

Date, C., J. 1994. An Introduction to Database Systems, Volume 1, Addison-Wesley

Davis, K., H., Arora, A., K. 1985. A Methodology for Trandating a Conventional File System into an Entity-
Relationship Model, in Proc. of ERA, IEEE/North-Holland

Davis, K., H., Arora, A., K. 1988. Converting a Relational Database model to an Entity Relationship Model, in Proc. of
ERA : a Bridge to the User, North-Holland

Edwards, H., M., Munro, M. 1995. Deriving a Logical Model for a System Using Recast Method, in Proc. of the 2nd
|EEE WC on Reverse Engineering, Toronto, |EEE Computer Society Press

Fikas, S., F. 1985. Automating the transformational development of software, |IEEE TSE, Vol. SE-11, pp1268-1277

08/07/02

33

Fong, J., Ho, M. 1994. Knowledge-based Approach for Abstracting Hierarchical and Network Schema Semantics, in
Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas, Springer-Verlag

Fonkam, M., M., Gray, W., A. 1992. An approach to Eliciting the Semantics of Relational Databases, in Proc. of 4th
Int. Conf. on Advance Information Systems Engineering - CAiSE'92, pp. 463-480, May, LNCS, Springer-Verlag

Elmasri, R., Navathe, S. 1994. Fundamentals of Database Systems, Benjamin-Cummings
Hainaut, J.-L. 1981. Theoretical and practical tools for data base design, in Proc. Intern. VLDB conf., ACM/IEEE

Hainaut, J-L. 1991a. Entity-generating Schema Transformation for Entity-Relationship Models, in Proc. of the 10th
ERA, San Mateo (CA), North-Holland

Hainaut, J-L., Cadelli, M., Decuyper, B., Marchand, O. 1992. Database CASE Tool Architecture : Principles for
Flexible Design Strategies, in Proc. of the 4th Int. Conf. on Advanced Information System Engineering (CAiSE-
92), Manchester, May 1992, Springer-Verlag, LNCS

Hainaut, J-L., Chandelon M., Tonneau C., Joris M. 1993. Contribution to a Theory of Database Reverse Engineering, in
Proc. of the IEEE Working Conf. on Reverse Engineering, Baltimore, May 1993, IEEE Computer Society Press

Hainaut, JL, Chandelon M., Tonneau C., Joris M. 1993b. Transformational techniques for database reverse
engineering, in Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas, E/R Ingtitute and Springer-
Verlag, LNCS

Hainaut, J-L, Englebert, V., Henrard, J., Hick JM., Roland, D. 1994. Evolution of database Applications : the DB-
MAIN Approach, in Proc. of the 13th Int. Conf. on ER Approach, Manchester, Springer-Verlag

Hainaut, J-L. 1995. Transformation-based database engineering, Tutorial notes, VLDB'95, Zirich, Switzerland, Sept.
1995 (available at jIh@info.fundp.ac.be)

Hainaut, J-L. 1996. Specification Preservation in Schema transformations - Application to Semantics and Statistics,
Data & Knowledge Engineering, Elsevier (to appear)

Hainaut, J-L, Roland, D., Hick M., Henrard, J., Englebert, V. 1996b. Database design recovery, DB-MAIN Research
Paper, (available at jIh@info.fundp.ac.be)

Halpin, T., A., Proper, H., A. 1995. Database schema transformation and optimization, in Proc. of the 14th Int. Conf. on
ER/OO Modelling (ERA), Springer-Verlag

Hal, P, A., V. (Ed.) 1992. Software Reuse and Reverse Engineering in Practice, Chapman& Hall
IEEE, 1990. Special issue on Reverse Engineering, | EEE Software, January, 1990

Johannesson, P., Kalman, K. 1990. A Method for Trandating Relational Schemas into Conceptual Schemas, in Proc. of
the 8th ERA, Toronto, North-Holland,

Joris, M., Van Hoe, R., Hainaut, JL., Chandelon M., Tonneau C., Bodart F. et al. 1992. PHENIX : methods and tools
for database reverse engineering, in Proc. 5th Int. Conf. on Software Engineering and Applications, Toulouse,
December 1992, EC2 Publish.

Kobayashi, 1. 1986. Losslessness and Semantic Correctness of Database Schema Transformation : another look of
Schema Equivalence, in Information Systems, Vol. 11, No 1, pp. 41-59

Kozaczynsky, Lilien, 1987. An extended Entity-Relationship (E2R) database specification and its automatic
verification and transformation, in Proc. of ERA Conf.

Markowitz, K., M., Makowsky, J., A. 1990. Identifying Extended Entity-Relationship Object Structures in Relational
Schemas, |EEE Trans. on Software Engineering, Vol. 16, No. 8

Navathe, S., B. 1980. Schema Analysis for Database Restructuring, in ACM TODS, Vol.5, No.2

Navathe, S., B., Awong, A. 1988. Abstracting Relational and Hierarchical Data with a Semantic Data Model, in Proc. of
ERA : a Bridge to the User, North-Holland

Nilsson,E., G. 1985. The Trandation of COBOL Data Structure to an Entity-Rel-type Conceptual Schema, in Proc. of
ERA, |EEE/North-Holland,

Petit, JM., Kouloumdjian, J., Bouliaut, J-F., Toumani, F. 1994. Using Queries to Improve Database Reverse
Engineering, in Proc. of the 13th Int. Conf. on ER Approach, Manchester, Springer-Verlag

Premerlani, W., J., Blaha, M.R. 1993. An Approach for Reverse Engineering of Relational Databases, in Proc. of the
| EEE Working Conf. on Reverse Engineering, |EEE Computer Society Press

Potts, C., Bruns, G. 1988. Recording the Reasons for Design Decisions, in Proc. of ICSE, IEEE Computer Society
Press

08/07/02

34

Rauh, O., Stickel, E. 1995. Standard Transformations for the Normalization of ER Schemata, in Proc. of the CAiSE*95
Conf., Jyvaskyld, Finland, LNCS, Springer-Verlag

Rock-Evans, R. 1990. Reverse Engineering : Markets, Methods and Tools, OVUM report

Rosenthal, A., Reiner, D. 1988. Theoretically sound transformations for practical database design, in Proc. of ERA
Conf.

Rosenthal, A., Reiner, D. 1994. Tools and Transformations - Rigourous and Otherwise - for Practical Database Design,
ACM TODS, Val. 19, No. 2

Rolland, C. 1993. Modeling the Requirements Engineering Process, in Proc of the 3rd European-Japanese Seminar in
Information Modeling and Knowledge Bases, May 1993, Budapest (preprints)

Sabanis, N., Stevenson, N. 1992. Tools and Techniques for Data Remodelling Cobol Applications, in Proc. 5th Int.
Conf. on Software Engineering and Applications, Toulouse, 7-11 December, pp. 517-529, EC2 Publish.

Selfridge, P., G., Waters, R., C., Chikofsky, E., J. 1993. Challenges to the Field of Reverse Engineering, in Proc. of the
1st WC on Reverse Engineering, pp.144-150, |IEEE Computer Society Press

Shoval, P., Shreiber, N. 1993. Database Reverse Engineering : from Relational to the Binary Relationship Model, Data
and Knowledge Engineering, Vol. 10, No. 10

Signore, O, Loffredo, M., Gregori, M., Cima, M. 1994. Reconstruction of ER Schema from Database Applications. a
Cognitive Approach, in Proc. of the 13th Int. Conf. on ER Approach, Manchester, Springer-Verlag

Springsteel, F., N., Kou, C. 1990. Reverse Data Engineering of E-R designed Relational schemas, in Proc. of
Databases, Parallel Architectures and their Applications

Teorey, T. J. 1994. Database Modeling and Design : the Fundamental Principles, Morgan Kaufmann

Vermeer, M., Apers, P. 1995. Reverse Engineering of Relational Databases, in Proc. of the 14th Int. Conf. on ER/OO
Modelling (ERA)

Weiser, M. 1984. Program Slicing, IEEE TSE, Val. 10, pp 352-357

Wills, L., Newcomb, P., Chikofsky, E., (Eds) 1995. Proc. of the 2nd IEEE Working Conf. on Reverse Engineering,
Toronto, July 1995, IEEE Computer Society Press

Winans, J., Davis, K., H. 1990. Software Reverse Engineering from a Currently Existing IMS Database to an Entity-
Relationship Model, in Proc. of ERA : the Core of Conceptual Modelling, pp. 345-360, October, North-Holland

08/07/02

