
Migration of Legacy Information Systems

Jean-Luc Hainaut1, Anthony Cleve1, Jean Henrard2, and Jean-Marc Hick2

1 PReCISE Research Centre
Laboratory of Database Engineering
University of Namur, Belgium

2 REVER s.a., Charleroi, Belgium

Summary. This chapter addresses the problem of platform migration of large business ap-
plications, that is, complex software systems built around a database and comprising thou-
sands of programs. More specifically, it studies the substitution of a modern data management
technology for a legacy one. Platform migration raises two major issues. The first one is the
conversion of the database to a new data management paradigm. Recent results have shown
that automated lossless database migration can be achieved, both at the schema and data lev-
els. The second problem concerns the adaptation of the application programs to the migrated
database schema and to the target data management system. This chapter first poses the prob-
lem and describes the State of the Art in information system migration. Then, it develops a
two-dimensional reference framework that identifies six representative migration strategies.
The latter are further analyzed in order to identify methodological requirements. In particu-
lar, it appears that transformational techniques are particularly suited to drive the whole mi-
gration process. We describe the database migration process, which is a variant of database
reengineering. Then, the problem of program conversion is studied. Some migration strate-
gies appear to minimize the program understanding effort, and therefore are sound candidates
to develop practical methodologies. Finally, the chapter describes a tool that supports such
methodologies and discusses some real-size case studies.

1 Introduction

Business applications are designed as informational and behavioural models of an organiza-
tion, such as an enterprise or an administration, and are developed to efficiently support its
main business processes. The terminformation systemis often used to designate large-scale
business applications. Though this term has been given several interpretations, we will limit its
scope in this chapter to a complex software and information system comprising one or several
databases and programs, whatever their technologies, that support the organization’s business
processes. In particular, we will ignore other important components such as user interfaces as
well as distribution and cooperation frameworks. The information system relies on a techno-
logical platform, made up of such components as operating systems, programming languages
and database management systems.

jlh
Note
Jean-Luc Hainaut, Anthony Cleve, Jean Henrard and Jean-Marc Hick. Migration of Legacy Information Systems, in Software Evolution. Mens, T. and Demeyer, S. (Eds), Springer, pp. 107-138, 2008.

2 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

1.1 Information System Evolution

Since every organization naturally evolves over time, its information system has to change
accordingly. This evolution is often driven by the business environment, that forces the organi-
zation to change its business processes, and, transitively, the information system that supports
them. Practically, the integration of new concepts and new business rules generally translates
into the introduction of new data structures and new program components, or into the updating
of existing ones.

On the other hand, the rapid technological evolution also induces a strong pressure to
modify the information system in order to make it apt to support new requirements that the
legacy technological platform was unable to meet. Two common motivations are worth being
mentioned, namely flexibility and vanishing skills.

Flexibility. As summarized by Brodie and Stonebraker [1],a legacy Information System
is any Information System that significantly resists modifications and change. One of the most
challenging instances of this problem comes from the increasing requirement to answer, al-
most in real time, unplanned questions by extracting data from the database. COBOL file
managers, as well as most legacy data management technologies, are efficient for batch and
(to some extent) transaction processing. However, answering a new query requires either ex-
tending an existing program or writing a new one, an expensive task that may need several
days. On the contrary, such a query can be formulated in SQL on a relational database in
minutes, most often by non-expert users.

Skill shortage.Many core technologies enjoy a surprisingly long life, often encompassing
several decades. Hiring experts that master them has become more and more difficult, so that
companies may be forced to abandon otherwise satisfying technologies due to lack of available
skills.

The business and technological dimensions of evolution can be, to a large extent, studied
independently. In this chapter, we address the issue of adapting an information system to
technological changes, a process generally calledmigration. More precisely we will study the
substitution of a modern data management system for a legacy technology.

1.2 Information System Reengineering and Migration

As defined by Chikofsky and Cross [2],reengineering, also known as [...] renovation [...],
is the examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Reengineering generally includes some form of
reverse engineering (to achieve a more abstract description) followed by some more form of
forward engineering or restructuring. Migration is a variant of reengineering in which the
transformation is driven by a major technology change.

Replacing a DBMS with another one should, in an ideal world, only impact the data-
base component of the information system. Unfortunately, the database most often has a deep
influence on other components, such as the application programs. Two reasons can be iden-
tified. First, the programs invoke data management services through an API that generally
relies on complex and highly specific protocols. Changing the DBMS, and therefore its pro-
tocols, involves the rewriting of the invocation code sections. Second, the database schema is
the technical translation of its conceptual schema through a set of rules that is dependent on
the DBMS data model. Porting the database to another DBMS, and therefore to another data
model, generally requires another set of rules, that produces a significantly different database
schema. Consequently, the code of the programs often has to be adapted to this new schema.

Migration of Legacy Information Systems 3

Clearly, the renovation of an information system by replacing an obsolete DBMS with a mod-
ern data management system leads to non trivial database (schemas and data) and programs
modifications.

1.3 System Migration: State of the Art

Technically, a legacy information system is made up of large and ageing programs relying on
legacy database systems (like IMS or CODASYL) or using primitive DMSs3 (a.o., COBOL
file system, ISAM). Legacy information systems often are isolated in that they do not eas-
ily interface with other applications. Moreover, they have proved critical to the business of
organizations. To keep being competitive, organizations must improve their information sys-
tem and invest in advanced technologies, specially through system evolution. In this context,
the claimed 75% cost of legacy systems maintenance (w.r.t. total cost) is considered pro-
hibitive [3].

Migration is an expensive and complex process, but it greatly increases the information
system control and evolution to meet future business requirements. The scientific and technical
literature ([4, 1]) mainly identifies two migration strategies, namely rewriting the legacy infor-
mation system from scratch or migrating by small incremental steps. The incremental strategy
allows the migration projects to be more controllable and predictable in terms of calendar and
budget. The difficulty lies in the determination of the migration steps.

Legacy IS migration is a major research domain that has yielded some general migration
methods. For example, Tilley and Smith [5] discuss current issues and trends in legacy system
reengineering from several perspectives (engineering, system, software, managerial, evolu-
tionary, and maintenance). They propose a framework to place reengineering in the context
of evolutionary systems. The butterfly methodology proposed by Wuet al. [6] provides a mi-
gration methodology and a generic toolkit to aid engineers in the process of migrating legacy
systems. This methodology, that does not rely on an incremental strategy, eliminates the need
of interoperability between the legacy and target systems.

Below, we gather the major migration approaches proposed in the literature according to
the various dimensions of the migration process as a whole.

Language dimension

Language conversion consists in translating (parts of) an existing program from a source pro-
gramming language to a target programming language. Ideally, the target program should
show the same behaviour as the source program. Malton [7] identifies three kinds of language
conversion scenarios, with their own difficulties and risks:

• Dialect conversionis the conversion of a program written in one dialect of a programming
language to another dialect of the same programming language.

• API migration is the adaptation of a program due to the replacement of external APIs. In
particular, API migration is required when changing the data management system.

• Language migration is the conversion from one programming language to a different
one. It may include dialect conversion and API migration.

Two main language conversion approaches can be found in the literature. The first one [8], that
might be calledabstraction-reimplementation, is a two-step method. First, the source program

3 DMS: Data Management System.

4 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

is analyzed in order to produce a high-level, language-independent description. Second, the
reimplementation process transforms the abstract description obtained in the first step into a
program in the target language. The second conversion approach [9, 7] does not include any
abstraction step. It is a three-phase conversion process: (1)normalization, that prepares the
source program to make the translation step easier; (2)translation, that produces an equiv-
alent program that correctly runs in the target language; (3)optimization: that improves the
maintenability of the target source code

Terekhov and Verhoef [9] show that the language conversion process is far from trivial.
This is especially true when the source and the target languages come from different para-
digms. A lot of research has been carried out on specific cases of language conversion, among
which PL/I to C++ [10], Smalltalk to C [11], C to Java [12] and Java to C# [13].

User interface dimension

Migrating user interfaces to modern platforms is another popular migration scenario. Such a
process may often benefit from an initial reverse engineering phase, as the one suggested by
Strouliaet al. [14]. This method starts from a recorded trace of the user interaction with the
legacy interface, and produces a corresponding state-transition model. The states represent the
unique legacy interface screens while the transitions correspond to the user action sequences
enabling transitions from one screen to another. De Luciaet al. [15] propose a practical ap-
proach to migrating legacy systems to multi-tier, web-based architectures. They present an
Eclipse-based plugin to support the migration of the graphical user interface and the restruc-
turing and wrapping of the original legacy code.

Platform and architecture dimensions

Other researches, that we briefly discuss below, examine the problem of migrating legacy
systems towards new architectural and technological platforms.

Towards distributed architectures. The Renaissance project [16] develops a systematic
method for system evolution and re-engineering and provides technical guidelines for the
migration of legacy systems (e.g. COBOL) to distributed client/server architectures. A generic
approach to reengineering legacy code for distributed environments is presented by Serrano
et al. [17]. The methodology combines techniques such as data mining, metrics, clustering,
object identification and wrapping. Canforaet al. [18] propose a framework supporting the
development of thin-client applications for limited mobile devices. This framework allows
Java AWT applications to be executed on a server while the graphical interfaces are displayed
on a remote client.

Towards object-oriented platforms. Migrating legacy systems towards object-oriented
structures is another research domain that has led to a lot of mature results, especially on ob-
ject identification approaches ([19, 20, 21, 22, 23]). Regarding the migration process itself,
the approach suggested by De Luciaet al. [24] consists of several steps combining reverse
engineering and reengineering techniques. More recently, Zou and Kontogiannis [25] have
presented an incremental and iterative migration framework for reengineering legacy proce-
dural source code into an object-oriented system.

Towards aspect-orientation.System migration towards aspect-oriented programming
(AOP) still is at its infancy. Several authors have addressed the initial reverse engineering
phase of the process, calledaspect mining, which aims at identifying crosscutting concern

Migration of Legacy Information Systems 5

code in existing systems. Among the various aspect mining techniques that have been pro-
posed, we mentionfan-in analysis[26], formal concept analysis[27], dynamic analysis[28]
andclone detection[29]. Regarding clone detection, Chapter??provides an overview of tech-
niques to identify and remove software redundancies. We also refer to Chapter?? for a more
complete discussion about current issues as well as future challenges in the area of aspect
mining, extraction and evolution.

Towards service-oriented architectures.Migrating legacy systems towards service-
oriented architectures (SOA) appears as one of the next challenges of the maintenance com-
munity. Sneed [30] presents a wrapping-based approach according to which legacy program
functions are offered as web services to external users. O’Brienet al. [31] propose the use of
architecture reconstruction to support migration to SOA. Chapter??presents a tool-supported
methodology for migrating legacy systems towards three-tier and service-oriented architec-
tures. This approach is based on graph transformation technology.

Database dimension

Closer to our data-centered approach, the Varlet project [32] adopts a typical two phase reengi-
neering process comprising a reverse engineering process phase followed by a standard data-
base implementation. The approach of Jeusfeld [33] is divided into three parts: mapping of
the original schema into a meta model, rearrangement of the intermediate representation and
production of the target schema. Some works also address the migration between two spe-
cific systems. Among those, Menhoudj and Ou-Halima [34] present a method to migrate the
data of COBOL legacy system into a relational database management system. The hierachical
to relational database migration is discussed in [35, 36]. General approaches to migrate rela-
tional database to object-oriented technology are proposed by Behmet al. [37] and Missaoui
et al. [38]. More recently, Bianchiet al. [39] propose an iterative approach to database reengi-
neering. This approach aims at eliminating the ageing symptoms of the legacy database [40]
when incrementally migrating the latter towards a modern platform.

Related work limitations

Though the current literature on data-intensive systems migration sometimes recommend a
semantics-based approach, relying on reverse engineering techniques, most technical solutions
adopted in the industry are based on the so-calledone-to-onemigration of the data structures
and contents, through a fully-automated process. As we will see below, these approaches lead
to poor quality results. Secondly, while most papers provide ad hoc solutions for particular
combinations of source/target DB platforms, there is still a lack of generic and systematic
studies encompassing database migration strategies and techniques. Thirdly, the conversion
of application programs in the context of database migration still remains an open problem.
Although some work (e.g., [39]) suggests the use of wrapping techniques, very little attention
is devoted to the way database wrappers are built or generated. In addition, the impact of the
different conversion techniques on target source code maintainability has not been discussed.

1.4 About this Chapter

This chapter presents a practical approach to data-intensive application reengineering based on
two independent dimensions, namely the data and the programs. We first propose a reference
model that allows us to describe and compare the main migration approaches that are based on

6 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

DBMS substitution (Section 2). This model identifies six representative strategies [41]. Sec-
tion 3 develops a transformational framework that forms a sound basis to formalize database
and program evolution, including migration. Then, the conversion of three main components
of the information system, namely database schemas, database contents and programs, are
described and discussed in Sections 4, 5 and 6 respectively. Section 7 describes a prototype
CASE environment for information system migration while Section 8 discusses some exper-
imental results. The six reference migration strategies are compared in Section 9. Finally,
Section 10 draws some conclusions and suggests paths for future work.

To make the discussion more concrete, we base it on one of the most popular problem
patterns, that is, the conversion of a legacy COBOL program, using standard indexed files,
into an equivalent COBOL program working on a relational database. The principles of the
discussion are of course independent of the language and of the DMS.

2 Migration Reference model

There is more than one way to migrate a data-intensive software system. Some approaches are
quite straightforward and inexpensive, but lead to poorly structured results that are difficult to
maintain. Others, on the contrary, produce good quality data structures and code, but at the
expense of substantial intelligent (and therefore difficult to automate) code restructuring. We
have built a reference model based on two dimensions, namely data and programs. Each of
them defines a series of change strategies, ranging from the simplest to the most sophisticated.
This model outlines a solution space in which we identify six typical strategies that will be de-
scribed below and discussed in the remainder of the chapter. This model relies on a frequently
used scenario, calleddatabase-first[42], according to which the database is transformed be-
fore program conversion. This approach allows developers to cleanly build new applications
on the new database while incrementally migrating the legacy programs.

Information system migration consists in deriving a new database from a legacy database
and in further adapting the software components accordingly [1]. Considering that a database
is made up of two main components, namely its schema(s) and its contents (thedata), the
migration comprises three main steps: (1)schema conversion, (2) data conversionand (3)
program conversion. Figure 1 depicts the organization of the database-first migration process,
that is made up of subprocesses that implement these three steps. Schema conversion produces
a formal description of the mapping between the objects of the legacy (S) and renovated (S’)
schemas. This mapping is then used to convert the data and the programs. Practical method-
ologies differ in the extent to which these processes are automated.

• Schema conversionis the translation of the legacy database structure, or schema, into
an equivalent database structure expressed in the new technology. Both schemas must
convey the same semantics, i.e., all the source data should be losslessly stored into the
target database. Most generally, the conversion of a source schema into a target schema is
made up of two processes. The first one, called database reverse engineering [43], aims at
recovering the conceptual schema that expresses the semantics of the source data struc-
ture. The second process is standard and consists in deriving the target physical schema
from this conceptual specification. Each of these processes can be modeled by a chain of
semantics-preserving schema transformations.

• Data conversionis the migration of the data instance from the legacy database to the new
one. This migration involves data transformations that derive from the schema transfor-
mations described above.

Migration of Legacy Information Systems 7

Renovated IS

D

PP

schema
conversion

data
conversion

S

program
conversion

mapping

Legacy IS

D'

P'P'

S'

Renovated IS

D

PP

schema
conversion

data
conversion

S

program
conversion

mapping

Legacy IS

D'

P'P'

S'

Fig. 1.Overall view of thedatabase-firstinformation system migration process

• Program conversion, in the context of database migration, is the modification of the
program so that it now accesses the migrated database instead of the legacy data. The
functionalities of the program are left unchanged, as well as its programming language and
its user interface (they can migrate too, but this is another problem). Program conversion
can be a complex process in that it relies on the rules used to transform the legacy schema
into the target schema.

2.1 Strategies

We consider two dimensions, namely database conversion and program conversion, from
which we will derive migration strategies.

physical

conceptual

Plogicstatementswrapper

D

<D2,P1> <D2,P3>

<D1,P1>

<D2,P2>

<D1,P2> <D1,P3>physical

conceptual

Plogicstatementswrapper

D

<D2,P1> <D2,P3>

<D1,P1>

<D2,P2>

<D1,P2> <D1,P3>

Fig. 2.The six reference IS migration strategies

The Database dimension (D)

We consider two extreme database conversion strategies leading to different levels of quality
of the transformed database. The first strategy (Physical conversionor D1) consists in translat-
ing each construct of the source database into the closest constructs of the target DMS without
attempting any semantic interpretation. The process is quite cheap, but it leads to poor quality
databases with no added value. The second strategy (Conceptual conversionor D2) consists

8 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

in recovering the precise semantic description (i.e., its conceptual schema) of the source data-
base first, through reverse engineering techniques, then in developing the target database from
this schema through a standard database methodology. The target database is of high qual-
ity according to the expressiveness of the new DMS model and is fully documented, but, as
expected, the process is more expensive.

The program dimension (P)

Once the database has been converted, several approaches to application programs adaptation
can be followed. We identify three reference strategies. The first one (Wrappersor P1) relies
on wrappers that encapsulate the new database to provide the application programs with the
legacy data access logic, so that these programs keep reading and writing records in (now
fictive) indexed files or CODASYL/IMS databases, generally through program calls instead
of through native I/O file statements. The second strategy (Statement rewritingor P2) consists
in rewriting the access statements in order to make them process the new data through the new
DMS-DML 4. For instance, a READ COBOL statement is replaced with a select-from-where
(SFW) or a fetch SQL statement. In these two first strategies, the program logic is neither
elicited nor changed. According to the third strategy (Logic rewritingor P3), the program is
rewritten in order to use the new DMS-DML at its full power. It requires a deep understanding
of the program logic, since the latter will generally be changed due to, for instance, the change
in database paradigm. These dimensions define six reference information system migration
strategies (Figure 2).

2.2 Running Example

The strategies developed in this chapter will be illustrated by a small case study in which
the legacy system comprises a standalone COBOL program and three files. Despite its small
size, the files and the program exhibit representative instances of the most problematic pat-
terns. This program records and displays information about customers that place orders. The
objective of the case study is to convert the legacy files into a new relational database and
to transform the application program into a new COBOL program, with the same business
functions, but that accesses the new database.

3 The Transformational Approach

Any process that consists in deriving artefacts from other artefacts relies on such techniques
as renaming, translating, restructuring, replacing, refining and abstracting, which basically
aretransformations. Most database engineering processes can be formalized as chains of el-
ementary schema and data transformations that preserve some of their aspects, such as its
information contents [44]. Information system evolution, and more particularly system mi-
gration as defined in this chapter, consists of the transformation of the legacy database and
of its programs into a new system comprising the renovated database and the renovated pro-
grams. As far as programs are concerned, the transformations must preserve the behaviour of
the interface with the database management system, though the syntax of this interface may
undergo some changes. Due to the specific scope of the concept of migration developed here,
only simple program transformations will be needed.

4 DML: Data Manipulation Language.

Migration of Legacy Information Systems 9

3.1 Schema Transformation

Roughly speaking, an elementary schema transformation consists in deriving a target schema
S′ from a source schemaS by replacing constructC (possibly empty) inS with a new con-
structC′ (possibly empty). Adding an attribute to an entity type, replacing a relationship type
by an equivalent entity type or by a foreign key and replacing an attribute by an entity type
(Figure 3) are some examples of schema transformations.

More formally, a transformationΣ is defined as a couple of mappings<T, t> such that,
C′ = T (C) andc′ = t(c), wherec is any instance ofC andc′ the corresponding instance of
C′. Structural mappingT is a rewriting rule that specifies how to modify the schema while
instance mappingt states how to compute the instance set ofC′ from the instances ofC.

There are several ways to express mappingT . For example,T can be defined (1) as a
couple of predicates defining the minimal source precondition and the maximal target post-
condition, (2) as a couple of source and target patterns or (3) through a procedure made up
of removing, adding, and renaming operators acting on elementary schema objects. Mapping
t will be specified by an algebraic formula, a calculus expression or even through an explicit
procedure.

Any transformationΣ can be given an inverse transformationΣ′ =<T ′, t′> such that
T ′(T (C)) = C. If, in addition, we also have:t′(t(c)) = c, thenΣ (and Σ′) are called
semantics-preserving5. Figure 3 shows a popular way to convert an attribute into an entity
type (structural mappingT), and back (structural mappingT ′). The instance mapping, that is
not shown, would describe how each instance of source attribute A2 is converted into an EA2
entity and an R relationship.

1-10-N R

EA2
A2
id: R.A

A2

A
A1
A3

A
A1
A2[0-N]
A3

T

T'

1-10-N R

EA2
A2
id: R.A

A2

A
A1
A3

A
A1
A2[0-N]
A3

T

T'

Fig. 3.Pattern-based representation of the structural mapping of ATTRIBUTE-to-ET transfor-
mation that replaces a multivalued attribute (A2) by an entity type (EA2) and a relationship
type (R).

Practically, the application of a transformation will be specified by its signature, that iden-
tifies the source objects and provides the names of the new target objects. For example, the
signatures of the transformations of Figure 3 are:

T : (EA2,R)← ATTRIBUTE-to-ET(A,A2)
T ′ : (A2) ← ET-to-ATTRIBUTE(EA2)

Transformations such as those in Figure 3 include names (A, A1, R, EA2, etc.) that actu-
ally are variable names. Substituting names of objects of an actual schema for these abstract
names provides fully or partially instantiated transformations. For example, (’PHONE’,’has’)
←ATTRIBUTE-to-ET(’CUSTOMER’,’Phone’) specifies the transformation of attribute Phone
of entity type CUSTOMER, while (EA2,R)← ATTRIBUTE-to-ET(’CUSTOMER’,A2) spec-
ifies the family of transformations of any attribute of CUSTOMER entity type.

5 The concept of semantics (or information contents) preservation is more complex, but
this definition is sufficient in this context. A more comprehensive definition can be found
in [44].

10 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

The concept of transformation is valid whatever the granularity of the object it applies to.
For instance, transforming conceptual schema CS into equivalent physical schema PS can be
modelled as a (complex) semantics-preserving transformation CS-to-PS =<CS-to-PS, cs-to-
ps> in such a way that PS = CS-to-PS(CS). This transformation has an inverse, PS-to-CS =
<PS-to-CS, ps-to-cs> so that CS = PS-to-CS(PS).

3.2 Compound Schema Transformation

A compound transformationΣ = Σ2◦Σ1 is obtained by applyingΣ2 on the database (schema
and data) that results from the application ofΣ1 [45]. Most complex database engineering
processes, particularly database design and reverse engineering, can be modelled as compound
semantics-preserving transformations. For instance, transformation CS-to-PS referred to here
above actually is a compound transformation, since it comprises logical design, that transforms
a conceptual schema into a logical schema, followed by physical design, that transforms the
logical schema into a physical schema [46]. So, the database design process can be modelled
by transformation CS-to-PS = LS-to-PS◦ CS-to-LS, while the reverse engineering process is
modelled by PS-to-CS = LS-to-CS◦ PS-to-LS.

3.3 Transformation History and Schema Mapping

The history of an engineering process is the formal trace of the transformations that were
carried out during its execution. Each transformation is entirely specified by its signature. The
sequence of these signatures reflects the order in which the transformations were carried out.
The history of a process provides the basis for such operations as undoing and replaying parts
of the process. It also supports the traceability of the source and target artefacts.

In particular, it formally and completely defines the mapping between a source schema and
its target counterpart when the latter was produced by means of a transformational process.
Indeed, the chain of transformations that originates from any definite source object precisely
designates the resulting objects in the target schema, as well as the way they were produced.
However, the history approach to mapping specification has proved complex, essentially for
three reasons [47]. First, a history includes information that is useless for schema migration. In
particular, the signatures often include additional information for undoing and inverting trans-
formations. Second, making histories evolve consistently over time is far from trivial. Third,
real histories are not linear, due to the exploratory nature of engineering processes. There-
fore, simpler mappings are often preferred, even though they are less powerful. For instance,
we proposed the use of the following lighweight technique based on stamp propagation [48].
Each source object receives a unique stamp that is propagated to all objects resulting from
the successive transformations. When comparing the source and target schemas, the objects
that have the same stamp exhibit a pattern that uniquely identifies the transformation that
was applied on the source object. This approach is valid provided that (1) only a limited set
of transformations is used and (2) the transformation chain from each source object is short
(one or two operations). Fortunately, these conditions are almost always met in real database
design.

3.4 Program Transformation

Program transformation is a modification or a sequence of modifications applied to a program.
Converting a program generally involves basic transformation steps that can be specified by

Migration of Legacy Information Systems 11

means ofrewrite rules. Term rewriting is the exhaustive application of a set of rewrite rules to
an input term (e.g., a program) until no rule can be applied anywhere in the term. Each rewrite
rule uses pattern matching to recognize a subterm to be transformed and replaces it with a
target pattern instance.

Program transformations form a sound basis for application program conversion in the
context of database migration. Indeed, the legacy I/O statements have to be rewritten with
two concerns in mind, namely making the program comply with the new DMS API, and,
more important, adapting the program logic to the new schema. The latter adaptation obvi-
ously depends on the way the legacy database schema was transformed into the new schema.
This issue has already been addressed in previous work [49]. We have proposed a general ap-
proach, based oncoupled transformations[50], according to which program rewrite rules are
associated to schema transformations in a DML-independent manner.

For instance, Figure 4 shows an abstract rewrite rule that propagates the schema trans-
formation depicted in Figure 3 to primitives that create an instance of entity typeA from the
values of variablesa1, a21, ...,a2N , a3. Since attributeA2 has been converted into an entity
type, the way instances ofA are created has to be changed. Creating an instance of entity type
A now involves the creation ofN instances of entity typeEA2 within an extra loop. Created
instances ofEA2 are connected to instancea of A through relationship typeR.

create a := A((: A1 = a1) create a := A((: A1 = a1)
and (: A2[1] = a21) and (: A3 = a3))
and (: A2[2] = a22) tc for i in 1..N do
· · · → create ea2 := EA2((: A2 = a2i)

and (: A2[N] = a2N) and (R : a))
and (: A3 = a3)) endfor

Fig. 4.Create mappingtc associated with structural mappingT of Fig. 3.

4 Schema Conversion

The schema conversion strategies mainly differ in the way they cope with the explicit and im-
plicit constructs (that is, the data structures and the integrity constraints) of the source schema.
An explicit constructis declared in the DDL code6 of the schema and can be identified through
examination or parsing of this code. Animplicit constructhas not been declared, but, rather,
is controlled and managed by external means, such as decoding and validating code fragments
scattered throughout the application code. Such construct can only be identified by sophisti-
cated analysis methods exploring the application code, the data, the user interfaces, to mention
the most important sources.

The schema conversion process analyzes the legacy application to extract the source phys-
ical schema (SPS) of the underlying database and transforms it into a target physical schema
(TPS) for the target DMS. The TPS is used to generate the DDL code of the new database.
In this section, we present two transformation strategies. The first strategy, called thephys-
ical schema conversion, merely simulates the explicit constructs of the legacy database into

6 DDL: Data Description Language.

12 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

the target DMS. According to the second one, theconceptualschema conversion, the com-
plete semantics of the legacy database is retrieved and represented into the technology-neutral
conceptual schema (CS), which is then used to develop the new database.

4.1 Physical conversion strategy (D1)

Principle

According to this strategy (Figure 5) each explicit construct of the legacy database is directly
translated into its closest equivalent in the target DMS. For instance, considering a standard
file to SQL conversion, each record type is translated into a table, each top-level field be-
comes a column and each record/alternate key is translated into a primary/secondary key. No
conceptual schema is built, so that the semantics of the data is ignored.

Renovated schemaschema
conversionSPS

mapping

Legacy schema

source DMS-DDL target DMS-DDLDDL
parsing

DDL
coding

TPS Renovated schemaschema
conversionSPS

mapping

Legacy schema

source DMS-DDL target DMS-DDLDDL
parsing

DDL
coding

TPS

Fig. 5.Physical schema conversion strategy (D1).

Methodology

TheDDL parsingprocess analyzes the DDL code to retrieve the physical schema of the source
database (SPS). This schema includes explicit constructs only. It is then converted into its
target DMS equivalent (TPS) through a straightforwardone-to-onemapping and finally coded
into the target DDL. Theschema conversionprocess also produces the source to target schema
mapping.

Legacy COBOL physical schema (SPS)

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

CUS
C-CODE
C-DESCR
id: C-CODE

acc

CUSTOMER

CUS

PRODUCT

PROD

ORDER

ORD

Renovated SQL target physical schema (TPS)

ORD
O_CODE
O_CUST
O_DETAIL
id: O_CODE

acc
acc: O_CUST

PROD
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

CUS
C_CODE
C_DESCR
id: C_CODE

acc

Legacy COBOL physical schema (SPS)

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

CUS
C-CODE
C-DESCR
id: C-CODE

acc

CUSTOMER

CUS

PRODUCT

PROD

ORDER

ORD

Legacy COBOL physical schema (SPS)

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

CUS
C-CODE
C-DESCR
id: C-CODE

acc

CUSTOMER

CUS

PRODUCT

PROD

ORDER

ORD

Renovated SQL target physical schema (TPS)

ORD
O_CODE
O_CUST
O_DETAIL
id: O_CODE

acc
acc: O_CUST

PROD
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

CUS
C_CODE
C_DESCR
id: C_CODE

acc

Renovated SQL target physical schema (TPS)

ORD
O_CODE
O_CUST
O_DETAIL
id: O_CODE

acc
acc: O_CUST

PROD
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

CUS
C_CODE
C_DESCR
id: C_CODE

acc

Fig. 6.Example of COBOL/SQL physical schema conversion.

Migration of Legacy Information Systems 13

Illustration

The analysis of the file and record declarations produces the SPS (Figure 6/left). Each COBOL
record type is translated into an SQL table, each field is converted into a column and object
names are made compliant with the SQL syntax (Figure 6/right). In this schema, a box repre-
sents a physical entity type (record type, table, segment, etc.). The first compartment specifies
its name, the second one gives its components (fields, columns, attributes) and the third one de-
clares secondary constructs such as keys and constraints (id stands for primary identifier/key,
acc stands for access key, or index, andref stands for foreign key). A cylinder represents a
data repository, commonly called a file.

4.2 Conceptual conversion strategy (D2)

Principle

This strategy aims at producing a target schema in which all the semantics of the source data-
base are made explicit, even those conveyed by implicit source constructs. In most cases, there
is no complete and up to date documentation of the information system, and in particular of the
database. Therefore, its logical and conceptual schemas must be recovered before generating
the target schema. The physical schema of the legacy database (SPS) is extracted and trans-
formed into a conceptual schema (CS) through reverse engineering. CS is then transformed
into the physical schema of the target system (TPS) through standard database development
techniques.

Renovated schema

schema
refinement

SPS mapping

Legacy IS

source DMS-DDL target DMS-DDLDDL
parsing

DDL
coding

TPS

schema
conceptualization

data

program
source codeprogram
source code

DB
physical design

SLS

DB
logical design

TLS

CS

Renovated schema

schema
refinement

SPS mapping

Legacy IS

source DMS-DDL target DMS-DDLDDL
parsing

DDL
coding

TPS

schema
conceptualization

data

program
source codeprogram
source code

DB
physical design

SLS

DB
logical design

TLS

CS

Fig. 7.Conceptual schema conversion strategy (D2)

Methodology

The left part of Figure 7 depicts the three steps of a simplified database reverse engineering
methodology used to recover the logical and conceptual schemas of the source database.

14 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

• As in the first strategy, the first step is the parsing of the DDL code to extract the physical
schema (SPS), which only includes the explicit constructs.

• Theschema refinementstep consists in refining the SPS by adding the implicit constructs
that are identified through the analysis of additional information sources, such as the
source code of the application programs and the database contents, to mention the most
common ones. Program code analysis performs an in-depth inspection of the way the
programs use and manage the data. Data validation, data modification and data access
programmingclichésare searched for in particular, since they concentrate the procedural
logic strongly linked with data properties. The existing data are also analyzed through
data mining techniques, either to detect constraints, or to confirm or discard hypotheses
on the existence of constraints. This step results in the source logical schema (SLS), that
includes the explicit representation of such constructs as record and field decomposition,
uniqueness constraints, foreign keys or enumerated domains that were absent in SPS. The
history SPS-to-SLS of the refinement process forms the first part of the source-to-target
mapping.

• The final step isschema conceptualizationthat semantically interprets the logical schema.
The result is expressed by the conceptual schema (CS). This schema is technology in-
dependent, and therefore independent of both the legacy and new DMSs. The history
SLS-to-CS of this process is appended to the source-to-target mapping.

A complete presentation of this reverse engineering methodology can be found in [43]
and [51], together with a fairly comprehensive bibliography on database reverse engineering.

The conceptual schema is then transformed into an equivalent logical schema (TLS),
which in turn is transformed into the physical schema (TPS). TPS is then used to generate
the DDL code of the target database. These processes are quite standard and are represented
in the right part of Figure 7. The histories CS-to-TLS and TLS-to-TPS are added to the source-
to-target mapping. The mapping SPS-to-TPS is now complete, and is defined as SPS-to-SLS
◦ SLS-to-CS◦ CS-to-TLS◦ TLS-to-TPS.

Illustration

The details of this reverse engineering case study have been described in [52]. We sketch
its main steps in the following. The legacy physical schema SPS is extracted as in the first
approach (Figure 8/top-left).

TheRefinementprocess enriches this schema with the following implicit constructs:

(1) Field O-DETAIL appears to be compound and multivalued, thanks to program analysis
techniques based on variable dependency graphs and program slicing.

(2) The implicit foreign keysO-CUSTandREF-DET-PROare identified by schema names
and structure patterns analysis, program code analysis and data analysis.

(3) The multivalued identifier (uniqueness constraint)REF-DET-PROof O-DETAIL can be
recovered through the same techniques.

The resulting logical schema SLS is depicted in Figure 8/top-right.
During thedata structure conceptualization, the implementation objects (record types,

fields, foreign keys, arrays,...) are transformed into their conceptual equivalent to produce the
conceptual schema CS (Figure 8/bottom-left).

Then, the database design process transforms the entity types, the attributes and the rela-
tionship types into relational constructs such as tables, columns, keys and constraints. Finally
physical constructs (indexes and storage spaces) are defined (Figure 8.bottom-right) and the
code of the new database is generated.

Migration of Legacy Information Systems 15

Legacy COBOL physical schema (SPS)

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

CUS
C-CODE
C-DESCR
id: C-CODE

acc

CUSTOMER

CUS

PRODUCT

PROD

ORDER

ORD

Legacy refined COBOL logical schema (SLS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL[0-20]

REF-DET-PRO
ORD-QTY

id: O-CODE
acc

ref: O-CUST
acc

ref: O-DETAIL[*].REF-DET-PRO
id(O-DETAIL):

REF-DET-PRO

CUS
C-CODE
C-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: C-CODE
acc

Conceptual schema (CS)

1-1

0-N

place 0-N

0-20
detail

Ord-qty

PRODUCT
P-Code
P-Name
P-Level
id: P-Code

ORDER
O-Code
id: O-Code

CUSTOMER
C-Code
C-Name
C-Address
C-Function
C-Rec-date
id: C-Code

0-N

1-1

0-N

0-20

Renovated SQL physical schema (TPS)

DETAIL
O_CODE
P_CODE
ORD_QTY
id: P_CODE

O_CODE
acc

ref: P_CODE
acc

ref: O_CODE
acc

PRODUCT
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORDER
O_CODE
C_CODE
id: O_CODE

acc
ref: C_CODE

acc

CUSTOMER
C_CODE
C_NAME
C_ADDRESS
C_FUNCTION
C_REC_DATE
id: C_CODE

acc

Legacy COBOL physical schema (SPS)

ORD
O-CODE
O-CUST
O-DETAIL
id: O-CODE

acc
acc: O-CUST

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

CUS
C-CODE
C-DESCR
id: C-CODE

acc

CUSTOMER

CUS

PRODUCT

PROD

ORDER

ORD

Legacy refined COBOL logical schema (SLS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL[0-20]

REF-DET-PRO
ORD-QTY

id: O-CODE
acc

ref: O-CUST
acc

ref: O-DETAIL[*].REF-DET-PRO
id(O-DETAIL):

REF-DET-PRO

CUS
C-CODE
C-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: C-CODE
acc

Legacy refined COBOL logical schema (SLS)

PROD
P-CODE
P-NAME
P-LEVEL
id: P-CODE

acc

ORD
O-CODE
O-CUST
O-DETAIL[0-20]

REF-DET-PRO
ORD-QTY

id: O-CODE
acc

ref: O-CUST
acc

ref: O-DETAIL[*].REF-DET-PRO
id(O-DETAIL):

REF-DET-PRO

CUS
C-CODE
C-DESCR

NAME
ADDR
FUNCT
REC-DATE

id: C-CODE
acc

Conceptual schema (CS)

1-1

0-N

place 0-N

0-20
detail

Ord-qty

PRODUCT
P-Code
P-Name
P-Level
id: P-Code

ORDER
O-Code
id: O-Code

CUSTOMER
C-Code
C-Name
C-Address
C-Function
C-Rec-date
id: C-Code

0-N

1-1

0-N

0-20

1-1

0-N

place 0-N

0-20
detail

Ord-qty

PRODUCT
P-Code
P-Name
P-Level
id: P-Code

ORDER
O-Code
id: O-Code

CUSTOMER
C-Code
C-Name
C-Address
C-Function
C-Rec-date
id: C-Code

0-N0-N

1-11-1

0-N0-N

0-200-20

Renovated SQL physical schema (TPS)

DETAIL
O_CODE
P_CODE
ORD_QTY
id: P_CODE

O_CODE
acc

ref: P_CODE
acc

ref: O_CODE
acc

PRODUCT
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORDER
O_CODE
C_CODE
id: O_CODE

acc
ref: C_CODE

acc

CUSTOMER
C_CODE
C_NAME
C_ADDRESS
C_FUNCTION
C_REC_DATE
id: C_CODE

acc

Renovated SQL physical schema (TPS)

DETAIL
O_CODE
P_CODE
ORD_QTY
id: P_CODE

O_CODE
acc

ref: P_CODE
acc

ref: O_CODE
acc

PRODUCT
P_CODE
P_NAME
P_LEVEL
id: P_CODE

acc

ORDER
O_CODE
C_CODE
id: O_CODE

acc
ref: C_CODE

acc

CUSTOMER
C_CODE
C_NAME
C_ADDRESS
C_FUNCTION
C_REC_DATE
id: C_CODE

acc

Fig. 8.Example of COBOL/SQL conceptual schema conversion.

5 Data Conversion

5.1 Principle

Data conversion is handled by a so-called Extract-Transform-Load (ETL) processor (Fig-
ure 9), which transforms the data from the data source to the format defined by the target
schema. Data conversion requires three steps. First, it performs the extraction of the data from
the legacy database. Then, it transforms these data in such a way that their structures match
the target format. Finally, it writes these data in the target database.

Renovated data

D data
conversion

mappingLegacy data

D'

Renovated data

D data
conversion

mappingLegacy data

D'

Fig. 9.Data migration architecture: converter and schema transformation.

Data conversion relies on the mapping that holds between the source and target physi-
cal schemas. This mapping is derived from the instance mappings (t) of the source-to-target
transformations stored in the history.

16 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

Deriving data conversion from the physical schema conversion (D1) is straightforward.
Indeed, both physical schemas are as similar as their DMS models permit, so that the transfor-
mation step most often consists in data format conversion.

The conceptual schema conversion strategy (D2) recovers the conceptual schema (CS) and
the target physical schema (TPS) implements all the constraints of this schema. Generally, both
CS and TPS include constraints that are missing in SPS, and that the source data may violate.
Thus data migration must include a preliminary data cleaning step that fixes or discards the
data that cannot be loaded in the target database [53]. This step cannot always be automated.
However, the schema refinement step identifies all the implicit constraints and produces a
formal specification for the data cleaning process. It must be noted that the physical schema
conversion strategy (D1) makes such data cleaning useless. Indeed, both SPS and TPS express
the same constraints that the source data are guaranteed to satisfy.

5.2 Methodology

Data conversion involves three main tasks. Firstly, the target physical schema (TPS) must be
implemented in the new DMS. Secondly, the mapping between the source and target physical
schemas must be defined as sequences of schema transformations according to one of the
two strategies described in Section 3. Finally, these mappings must be implemented in the
converter for translating the legacy data according to the format defined in TPS.

Since each transformation is formally defined by<T, t>, the instance mapping sps-to-tps
is automatically derived from the compound transformation SPS-to-TPS built in the schema
conversion process. The converter is based on the structural mappings SPS-to-TPS to write
the extraction and insertion requests and on the corresponding instance mappings sps-to-tps
for data transformation.

6 Program Conversion

The program conversion process aims at re-establishing the consistency that holds between
application programs and the migrated database. The nature of this consistency is twofold.
First, the programs have to comply with the API of the DMS, by using the right data manip-
ulation language and interaction protocols. Second, the programs have to manipulate the data
in their correct format, i.e., the format declared in the database schema.

This section analyzes the three program modification strategies specified in Figure 2. The
first one relies onwrapper technology(P1) to map the access primitives onto the new database
through wrapper invocations that replace the DML statements of the legacy DMS. The second
strategy (P2) replaces each statement with its equivalent in the new DMS-DML. According
to the P3 strategy, the access logic is rewritten to comply with the DML of the new DMS. In
strategies P2 and P3, access statements are expressed in the DML of the new DMS.

In order to compare the three program conversion strategies, we will apply them succes-
sively on the same legacy COBOL fragment, given in Figure 10. This code fragment deletes
all the orders placed by a given customer.

6.1 Wrapper Strategy (P1)

Principle

In migration and interoperability architectures, wrappers are popular components that convert
legacy interfaces into modern ones. Such wrappers allow the reuse of legacy components [54]

Migration of Legacy Information Systems 17

DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
READ ORDERS KEY IS O-CUST

INVALID KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
DELETE ORDERS.
READ ORDERS NEXT

AT END MOVE 1 TO END-FILE
NOT AT END

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

Fig. 10. A legacy COBOL code fragment that deletes the orders corresponding to a given
customer.

(e.g., allow Java programs to access COBOL files). The wrappers discussed in this chapter are
of a different nature, in that they simulate the legacy data interface on top of the new database.
For instance, they allow COBOL programs toread, write, rewrite records that are built from
rows extracted from a relational database. In a certain sense, they could be calledbackward
wrappers. An in-depth analysis of both kinds of wrappers can be found in [55].

The wrapper conversion strategy attempts to preserve the logic of the legacy programs
and to map it on the new DMS technology [1]. Adata wrapperis a data model conversion
component that is called by the application program to carry out operations on the database.
In this way, the application program invokes the wrapper instead of the legacy DMS. If the
wrapper simulates the modeling paradigm of the legacy DMS and its interface, the alteration
of the legacy code is minimal. It mainly consists in replacing DML statements with wrapper
invocations.

The wrapper converts all legacy DMS requests from legacy applications into requests
against the new DMS that now manages the data. Conversely, it captures results from the new
DMS, converts them to the appropriate legacy format [56] (Figure 11) and delivers them to
the application program.

new
DB

legacy
program
legacy

program

SPS

wrapperwrapper

new DBMSnew DBMS

new programnew program

TPS

new
DB

legacy
program
legacy

program

SPS

wrapperwrapper

new DBMSnew DBMS

new programnew program

TPS

Fig. 11.Wrapper-based migration architecture: a wrapper allows the data managed by a new
DMS to be accessed by the legacy programs.

18 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

Methodology

Schemas SPS and TPS, as well as the mapping between them (SPS-to-TPS) provide the nec-
essary information to derive the procedural code of the wrappers. For each COBOL source
record type, a wrapper is built that simulates the COBOL file handling statements. The sim-
ulated behaviour must also include the management of currency indicators (internal dynamic
pointers to current records) as well as error handling.

Once the wrappers have been built, they have to be interfaced with the legacy programs.
This can be done by replacing, in the latter, original data access operations with wrapper
invocations. Such a transformation is straightforward, each instruction being replaced with a
call to the corresponding wrapper and, in some cases, an additional test. In the case of COBOL
file handling, the test checks the value of the wrapper status in order to simulateinvalid key
andat endclauses.

Legacy code adaptation also requires other minor reorganizations like modifying theen-
vironment divisionand thedata divisionof the programs. The declaration of files in theenvi-
ronment divisioncan be discarded. The declaration of record types has to be moved from the
input-output sectionto theworking storage section. The declarations of new variables used to
call the wrapper (action, option and status) are added to theworking storage section. Finally,
new code sections are introduced into the program (e.g., database connection code).

Some legacy DMS, such as MicroFocus COBOL, provide an elegant way to interface
wrappers with legacy programs. They allow programmers to replace the standard file manage-
ment library with a customized library (thewrapper). In this case, the legacy code does not
need to be modified at all.

The<D1,P1> and<D2,P1> strategies only differ in the complexity of the wrappers that
have to be generated. The program transformation is the same in both strategies since each
legacy DML instruction is replaced with a wrapper invocation. The code of the wrappers for
the<D1,P1> strategy is trivial because each explicit data structure of the legacy database is
directly translated into a similar structure of the target database. In the<D2,P1> strategy the
conceptual schema is recovered and the new physical schema can be very different from the
legacy one. For instance, a record can be split into two or more tables, a table may contain
data from more than one record, new constraints might be implemented into the new DMS,
etc. In this strategy, translating aREADcommand may require to access more than one table
and to perform additional tests and loops.

Illustration

To illustrate the way data wrappers are used, let us consider the legacy COBOL fragment
of Figure 10, which comprisesREADandDELETEprimitives. As shown in Figure 12, each
primitive is simply replaced with a corresponding wrapper invocation. From the program side,
the wrapper is a black box that simulates the behaviour of the COBOL file handling primitives
on top of the SQL database. Note that the P1 program adaptation strategy does not depend on
the schema conversion strategy. This choice only affects the complexity of the wrapper code,
since the latter is directly derived from the mapping that holds between the legacy and new
database schemas.

Migration of Legacy Information Systems 19

DELETE-CUS-ORD.
MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
SET WR-ACTION-READ TO TRUE.
MOVE "KEY IS O-CUST" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS
IF WR-STATUS-INVALID-KEY MOVE 1 TO END-FILE.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
SET WR-ACTION-DELETE TO TRUE.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
SET WR-ACTION-READ TO TRUE.
MOVE "NEXT" TO WR-OPTION.
CALL WR-ORDERS USING WR-ACTION, ORD, WR-OPTION, WR-STATUS.
IF WR-STATUS-AT-END

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

Fig. 12.Code fragment of Fig. 10 converted using theWrapperstrategy (P1)

6.2 Statement Rewriting (P2)

Principle

This program modification technique depends on the schema conversion strategy. It consists
in replacing legacy DMS-DML statements with native DML statements of the new DMS. For
example, every file access statement in a COBOL program has to be replaced with an equiv-
alent sequence of relational statements. As for the wrapper strategy, program data structures
are left unchanged. Consequently, the relational data must be stored into the legacy COBOL
variables.

In the case of the physical schema conversion strategy (D1), the conversion process can
be easily automated, thanks to the simple SPS-to-TPS mapping. The conceptual schema con-
version strategy (D2) typically flattens complex COBOL structures in the target relational
schema. This makes the use of additional loops necessary when retrieving the value of a com-
pound multivalued COBOL variable. Although the substitution process is more complex than
in the D1 strategy, it can also be fully automated.

Methodology

The program modification process may be technically complex, but does not need sophisti-
cated methodology. Each DML statement has to be located, its parameters have to be iden-
tified and the new sequence of DML statements has to be defined and inserted in the code.
The main point is how to translate iterative accesses in a systematic way. For instance, in
the most popular COBOL-to-SQL conversion, there exist several techniques to express the
typical START/READ NEXTloop with SQL statements. The task may be complex due to
loosely structured programs and the use of dynamic DML statements. For instance, a COBOL
READ NEXTstatement can follow a statically unidentifiedSTARTor READ KEY ISinitial
statement, making it impossible to identify the record key used. A description of a specific
technique that solves this problem is provided below.

20 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

Illustration

The change of paradigm when moving from standard files to relational database raises such
problems as the identification of the sequence scan. COBOL allows the programmer to start
a sequence based on an indexed key (START/READ KEY IS), then to go on in this se-
quence throughREAD NEXTprimitives. The most obvious SQL translation is performed
with a cursor-based loop. However, sinceREAD NEXTstatements may be scattered through-
out the program, the identification of the initiatingSTARTor READ KEY ISstatement may
require complex static analysis of the program data and control flows.

The technique illustrated in Figure 13 solves this problem. This technique is based on
state registers, such asORD-SEQ, that specify the current key of each record type, and con-
sequently the matching SQL cursor. A cursor is declared for each kind of record key usage
(equal, greater, not less) in the program. For instance, the tableORDgives at most six cursors
(combination of two record keys and three key usages).

The example of Figure 13 shows the<D2,P2> conversion the COBOL code fragment
of Figure 10. During the schema conversion process, theO-DETAIL compound multivalued
field has been converted into theDETAIL SQL table. So, rebuilding the value ofO-DETAIL
requires the execution of a loop and a newFILL-ORD-DETAIL procedure. This new loop
retrieves the details corresponding to the currentORDrecord, using a dedicated SQL cursor.

6.3 Logic Rewriting (P3)

Principle

The program is rewritten to explicitly access the new data structures and take advantage of the
new data system features. This rewriting task is a complex conversion process that requires an
in-depth understanding of the program logic. For example, the processing code of a COBOL
record type may be replaced with a code section that copes with several SQL tables or a
COBOL loop may be replaced with a single SQL join.

The complexity of the problem prevents the complete automation of the conversion
process. Tools can be developed to find the statements thatshouldbe modified by the pro-
grammer and to give hints on how to rewrite them. However, modifying the code is still up to
the programmer.

This strategy can be justified if the whole system, that is database and programs, has be
renovated in the long term (strategy<D2,P3>). After the reengineering, the new database
and the new programs take advantage of the expressiveness of the new technology. When the
new database is just aone-to-onetranslation of the legacy database (<D1,P3>), this strategy
can be very expensive for a poor result. The new database just simulates the old one and
takes no advantage of the new DMS. Worse, it inherits all the flaws of the old database (bad
design, design deteriorated by maintenance, poor expressiveness, etc.). Thus, we only address
the<D2,P3> strategy in the remaining of this section.

Methodology

The P3 strategy is much more complex than the previous ones since every part of the program
may be influenced by the schema transformation. The most obvious method consists in (1)
identifying the file access statements, (2) identifying and understanding the statements and the
data objects that depend on these access statements and (3) rewriting these statements as a
whole and redefining these data objects.

Migration of Legacy Information Systems 21

EXEC SQL DECLARE CURSOR ORD_GE_K1 FOR
SELECT CODE, CUS_CODE
FROM ORDERS WHERE CUS_CODE >= :O-CUST
ORDER BY CUS_CODE

END-EXEC.
...
EXEC SQL DECLARE CURSOR ORD_DETAIL FOR

SELECT PROD_CODE, QUANTITY
FROM DETAIL WHERE ORD_CODE = :O-CODE

END-EXEC.
...
DELETE-CUS-ORD.

MOVE C-CODE TO O-CUST.
MOVE 0 TO END-FILE.
EXEC SQL

SELECT COUNT(*) INTO :COUNTER
FROM ORDERS WHERE CUS_CODE = :O-CUST

END-EXEC.
IF COUNTER = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_GE_K1 END-EXEC
MOVE "ORD_GE_K1" TO ORD-SEQ
EXEC SQL

FETCH ORD_GE_K1
INTO :O-CODE, :O-CUST

END-EXEC
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

EXEC SQL OPEN ORD_DETAIL END-EXEC
SET IND-DET TO 1
MOVE 0 TO END-DETAIL
PERFORM FILL-ORD-DETAIL UNTIL END-DETAIL = 1

END-IF
END-IF.
PERFORM DELETE-ORDER UNTIL END-FILE = 1.

DELETE-ORDER.
EXEC SQL

DELETE FROM ORDERS
WHERE CODE = :O-CODE

END-EXEC.
IF ORD-SEQ = "ORD_GE_K1"

EXEC SQL
FETCH ORD_GE_K1 INTO :O-CODE,:O-CUST

END-EXEC
ELSE IF ...

...
END-IF.
IF SQLCODE NOT = 0

MOVE 1 TO END-FILE
ELSE

IF O-CUST NOT = C-CODE
MOVE 1 TO END-FILE.

...
FIlL-ORD-DETAIL SECTION.

EXEC SQL
FETCH ORD_DETAIL
INTO :REF-DET-PRO(IND-DET),:ORD-QTY(IND-DET)

END-EXEC.
SET IND-DET UP BY 1.
IF SQLCODE NOT = 0

MOVE 1 TO END-DETAIL.

Fig. 13.Code fragment of Fig. 10 converted using theStatement Rewritingstrategy (P2)

22 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

Illustration

Figure 14 shows the code fragment of Figure 10 converted using theLogic Rewritingstrategy.
The resulting code benefits from the full power of SQL. The two-stepposition then delete
pattern, which is typical of navigational DMS, can be replaced with a single predicate-based
deletestatement.

DELETE-CUS-ORD.
EXEC SQL

DELETE FROM ORDERS
WHERE CUS_CODE = :C-CODE

END-EXEC.
IF SQLCODE NOT = 0 THEN GO TO ERR-DEL-ORD.

Fig. 14.Code fragment of Fig. 10 converted using theLogic Rewritingstrategy (P3)

7 Tool Support

Some of the information system migration strategies we developed in this chapter have been
implemented using two complementary transformational technologies, namely DB-MAIN and
the ASF+SDF Meta-Environment.

7.1 The tools

The DB-MAIN CASE environment

DB-MAIN [57] is a data-oriented CASE environment developed by the Laboratory of Data-
base Application Engineering (LIBD) of the University of Namur. Its purpose is to help the
analyst in the design, reverse engineering, reengineering, maintenance and evolution of data-
base applications.

DB-MAIN offers general functions and components that allow the development of so-
phisticated processors supporting data-centered application renovation:

• A generic model of schema representation based on the GER (Generic Entity/Relation-
ship) model to describe data structures in all abstraction levels and according to all popular
modelling paradigms.

• A graphical interface to view the repository and apply operations.
• A transformational toolbox rich enough to encompass most database engineering and re-

verse engineering processes.
• Customizable assistants (e.g., transformation, reverse engineering, conformity analysis)

to help solve complex and repetitive problems.
• A history processor to record, replay, save or invert history.

DB-MAIN also includes several processors specific to the reverse engineering process [58],
such as DDL parsers for most popular DMSs, a foreign key discovery assistant, and program
analysis tools (pattern matching, variable dependency analysis and program slicing). Experi-
ence of actual reverse engineering taught us that there are no two reengineering projects are

Migration of Legacy Information Systems 23

the same. Hence the need for programmable, extensible and customizable tools. DB-MAIN
(and more specifically its meta functions) includes features to extend its repository and de-
velop new functions. It includes in particular a 4GL (Voyager2) as well as a Java API that
allow analysts to quickly develop their own customized processors [43].

The ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [59] is an interactive development environment for the au-
tomatic generation of interactive systems for manipulating programs, specifications, or other
texts written in a formal language. It is developed by the SEN1 research group of the CWI in
Amsterdam. In the context of system migration, the ASF+SDF Meta-Environment provides
tool generators to support the program conversion step. It allows both defining the syntax of
programming languages and specifying transformations of programs written in such program-
ming languages [60].

The next sections describe the tool support in the different steps of the methodologies
described in this chapter for schema, data and program conversion.

7.2 Schema Conversion

The physical schema conversion strategy uses simple tools only, such as a DDL parser to
extract SPS, an elementary schema converter to transform SPS into TPS and a DDL generator.
Complex analyzers are not required.

In the conceptual schema conversion strategy, extracting SPS and storing it in the CASE
tool repository is done through a DDL parser (SQL, COBOL, IMS, CODASYL, RPG, XML)
from the parser library. Schema refinement requires schema, data and program analyzers. Data
structure conceptualization and database design are based on schema transformations. Code
generators produce the DDL code of the new database according to the specifications of TPS.

7.3 Mapping Definition

We use the transformation toolkit of DB-MAIN to carry out the chain of schema transfor-
mations needed during the schema conversion phase. DB-MAIN automatically generates and
maintains a history log of all the transformations that are applied to the legacy DB schema
(SPS) to obtain the target DB schema (TPS). This history log is formalized in such a way that
it can be analyzed and transformed. Particularly, it can be used to derive both the mappings
between SPS and TPS. A visual mapping assistant has been developed to support the defini-
tion, the visualization and the validation of inter-schema mappings. This tool is based on the
stamping technique described in Section 3.3.

7.4 Data Conversion

Writing data converters manually is an expensive task, particularly for complex mappings (for
simple mappings parametric ETL converters are quite sufficient). The DB-MAIN CASE tool
includes specific history analyzers and converter generators that have been described in [61].

24 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

7.5 Program Conversion

Wrapper Generation

So far, wrapper generators for COBOL-to-SQL and IDS/II7-to-SQL have been developed.
These generators are implemented through Java plug-ins of DB-MAIN, and require the fol-
lowing inputs:

• the legacy database schema
• an optional intermediate schema
• the target database schema
• the mapping between these two (three) schemas

The generators produce the code that provides the application programs with a legacy
interface to the new database. In practice, we generate one wrapper per legacy record type.
Each generated wrapper is a COBOL program with embedded SQL primitives. The generated
wrappers simulate the legacy DMS on top on the renovated database. Note that the same tools
can be used for supporting both P1 and P2 program conversion strategies, which mainly differ
from the target location of the generated code (wrapper or new program section).

Legacy Code Transformation

The adaptation of the legacy application programs relies on the ASF+SDF Meta-Environment.
We use an SDF version of the IBM VS COBOL II grammar, which was obtained by Lämmel
and Verhoef [62]. We specify a set of rewrite rules (ASF equations) on top of this grammar
to obtain two similar program transformation tools. The first tool is used in the context of
COBOL-to-SQL migration, while the second one supports IDS/II-to-SQL conversion.

The main input arguments of the program transformers are automatically generated. These
parameters include:

• the list of the migrated record types
• additional variable declarations
• additional program code sections
• owner and members of each set (IDS/II)
• list of the declared record keys (IDS/II)

The program transformation tools are suitable in case of partial migration, i.e., when only
some legacy record types actually are migrated to the new database platform. In that case, only
the DML instructions manipulating migrated data are adapted. The other DML instructions,
which still access the legacy data, are left unchanged.

8 Industrial Application

We have been involved in several industrial reverse engineering and reengineering projects
during the last three years. In this section, we particularly report on an ongoing IDS/II-to-SQL
database migration project.

7 IDS/II is the BULL implementation of CODASYL

Migration of Legacy Information Systems 25

8.1 Project Overview

The project aims at migrating a large COBOL system towards a relational (DB2) database
platform. The legacy system runs on a Bull mainframe and is made of nearly 2300 programs,
totaling more than 2 million lines of COBOL code. The information system makes use of
an IDS/II database. The source physical DB schema comprises 231 record types, 213 sets and
648 fields. The migration strategy chosen is based on the combination of a conceptual database
conversion (D2) and a wrapper-based program conversion (P1).

8.2 Process Followed

The project started with a prototyping phase, during which a consistent subset of the data and
programs has been fully migrated. This initial phase aims at verifying the correctness of the
overall migration through a systematic testing process. The database subset includes 26 IDS/II
record types and 31 sets. The legacy programs selected for conversion comprise 51 KLOC and
make use of almost every possible IDS/II statement (find, get, erase, store, modify, connect,
disconnect, etc.). The tests, performed with the help of IDS/II experts from the customer side,
have shown the correctness of the automated program conversion.

Below, we describe the main phases that we followed to migrate the complete legacy
system.

Inventory

The purpose of the inventory process is twofold. First, it aims at checking that we have re-
ceived a complete and consistent set of source code files from the customer. Second, it allows
us to get a rapid overview of the application architecture in order to evaluate the complexity
of the migration task, as well as the part of the work that cannot be automated. In this project,
the inventory phase produced the following results :

• complete statistics about the IDS/II statements (number, type, location);
• the program call graph, specifying which program calls which program;
• the database usage graph, specifying which program uses which IDS/II record type;
• a classification of the legacy source code files based on their database usage (no access,

indirect access or direct access).

Schema Conversion through DBRE

During the database reverse engineering process, program analysis techniques have been used
in order to retrieve different kinds of information about the legacy database. In particular,
dataflow analysis allowed us to find which program variables are used to manipulate the
records, in order to deduce a more precise record decomposition. Dataflow analysis was also
used to elicit implicit data dependencies that exist between database fields, among which po-
tential foreign keys. Our dataflow analysis approach is inspired by the interprocedural slicing
algorithm proposed by Horwitzet al. [63], based on the system dependency graph (SDG). We
refer to [64] for more details on the use of SDGs in database reverse engineering.

Among others, the DBRE process allowed us to:

• recover finer-grained structural decompositions for record types and attributes;

26 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

• retrieve implicit data dependencies, including 89 foreign keys, 37 computed foreign keys,
and 60 other redundancies.

Table 1 gives a comparison of the successive versions of the database schema. The physical
IDS/II schema is the initial schema extracted from the DDL code (here we consider the subset
of the schema actually migrated). The refined IDS/II schema is the physical schema with a
finer-grained structure. It was obtained by resolving numerous copybooks in which structural
decompositions of physical attributes are declared. In the refined IDS schema, most attributes
are declared several times throughredefinesclauses, hence the huge total number of attributes.
The conceptual schema is the result of the conceptualization phase. It comprises only one
declaration per attribute. When a conflict occurs, the chosen attribute decomposition is the
one the analyst considers to be the most expressive. In addition, the number of entity type
is different since some technical record types were discarded while other ones were splitted
(sub-types). Finally, the relational schema shows an increase in the number of entity types,
due to the decomposition of arrays, as well as a reduction of the number of attributes due to
the aggregation of compound fields.

Table 1.Comparison of successive versions of the complete database schema

Physical IDS/II Refined IDS/II Conceptual Relational DB2

entity types 159 159 156 171
relationship types 148 148 90 0
attributes 458 9 027 2 176 2 118
max # att./entity type 8 104 61 94

Data Validation and Migration

During the schema conversion phase, the mapping of the various components is recorded
between the successive schemas, such that we know precisely how each concept is represented
in each schema. From such mappings we can generate two kinds of programs:
• Data validators, which check if the legacy data comply with all recovered implicit con-

straints;
• Data migrators, that actually migrate the legacy data to the relational database.

The data validation step revealed that many implicit referential constraints were actually vi-
olated by the legacy data. This is explained by the fact that most rules are simply encoding
rules which are not always checked again when data are updated, and by the fact that users
find tricks to bypass some rules.

Wrapper-based Program Conversion

The wrapper generation phase produced 159 database wrappers. Each generated wrapper is a
COBOL program containing embedded SQL primitives. The total wrapper code size is about
450 KLOC.

The results obtained during the legacy code adaptation are summarized in Table 2. A
total of 669 programs and 3 917 copybooks were converted. We notice that about 92% of the
IDS/II verbs were transformed automatically, while the manual work concerned 85 distinct
source code files only.

Migration of Legacy Information Systems 27

Table 2.Program transformation results

Migrated Manually
transformed

programs 669 17
copybooks 3 917 68
IDS/II verbs 5 314 420

8.3 Lessons Learned

Methodology

As in previous projects, the initial inventory step proved to be critical. It required several it-
erations since we discovered missing copybooks and programs, as well as code fragments
containing syntax errors. The prototyping phase also proved valuable, since it allowed us to
detect problems early in the process and to better confront our results with the customer re-
quirements. Another conclusion is that the database reverse engineering process may benefit
from the data validation phase. Indeed, analyzing database contents does not only allow to de-
tect errors, it may also serve as a basis for formulating new hypotheses about potential implicit
constraints.

Automation

Although large-scale system conversion needs to be supported by scalable tools, the full au-
tomation of the process is clearly unrealistic. Indeed, such a project typically requires several
iterations as well as multiple human decisions. In particular, while previous smaller projects
allowed us to automate the schema design process with minor manual corrections, assisted
manual conversion becomes necessary when dealing with larger schemas. For instance, trans-
lating a compound attribute into SQL columns can be done either by disaggregation, by ex-
traction or by aggregation. In this project, the chosen technique depended on the nature of the
compound attribute (e.g., each compound attribute representing a date has been translated as
a single column). The database design must respect various other constraints like the type and
naming conventions of the customer.

Wrapper development

Writing correct wrapper generators requires a very good knowledge of the legacy DMS. In
this project, the difficulties of wrapper generation were due to the paradigm mismatch between
network and relational database systems. Simulating IDS/II verbs on top of a native relational
database appeared much more complicated than expected. The generated wrappers must pre-
cisely simulate the IDS/II primitives behaviour, which includes the synchronized management
of multiple currency indicators, reading sequence orders and returning status codes. Another
challenge, as for the data extractors, was to correctly manage IDS/II records that have been
split into several SQL tables.

28 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

9 Strategies Comparison

Six representative strategies of information system migration have been identified. In this
section, we compare them according to each dimension and we suggest possible applications
for each system migration strategy.

9.1 Database Conversion Strategies

The physical schema conversion(D1) does not recover the semantics of the database but
blindly translates in the target technology the design flaws as well as the technical structures
peculiar to the source technology. This strategy can be fully automated, and can be performed
manually, at least for small to medium size databases. Further attempts to modify the struc-
ture of the database (e.g., adding some fields or changing constraints) will force the analyst
to think in terms of the legacy data structures, and therefore to recover their semantics. The
source database was optimized for the legacy DMS, and translating it in the new technol-
ogy most often leads to poor performance and limited capabilities. For example, a COBOL
record that includes an array will be transformed into a table in which the array is translated
into an unstructured column, making it impossible to query its contents. Doing so would re-
quire writing specific programs that recover the implicit structure of the column. Clearly, this
strategy is very cheap (and therefore very popular), but leads to poor results that will make
future maintenance expensive and unsafe. In particular, developing new applications is almost
impossible.

Nevertheless, we must mention an unfrequent situation for which this strategy can be
valuable, that is, when the legacy database has been designed and implemented in a disciplined
way according to the database theory. For instance, a database made up of a collection of 3NF8

record types can be migrated in a straighforward way to an equivalent relational database of
good quality.

Theconceptual schema conversion(D2) produces a high quality conceptual schema that
explicitly represents all the semantics of the data, but from which technology and perfor-
mance dependent constructs have been discarded. It has also been cleaned from the design
flaws introduced by unexperienced designers and by decades of incremental maintenance.
This conceptual schema is used to produce the TPS that can use all the expressiveness of the
new DMS model and can be optimized for this DMS. Since the new database schema is nor-
malized and fully documented, its maintenance and evolution is particularly easy and safe.
In addition, making implicit constraints explicit automatically induces drastic data validation
during data migration, and increases the quality of these data. However, this strategy requires
a complex reverse engineering process that can prove expensive. For example, the complete
reverse engineering of a medium size database typically costs two to four man-months.

9.2 Program Conversion Strategies

The wrapper strategy(P1) does not alter the logic of the legacy application program. When
working on the external data, the transformed program simply invokes the wrapper instead of
the legacy DMS primitives. The transformation of the program is quite straightforward: each
legacy DMS-DML is replaced with a call to the wrapper. So, this transformation can easily be
automated. The resulting program has almost the same code as the source program, so a pro-
grammer who has mastered the latter can still maintain the new version without any additional

8 3NF stands forthird normal form

Migration of Legacy Information Systems 29

effort or documentation. When the structure of the database evolves, only the wrapper need be
modified, while the application program can be left unchanged. The complexity of the wrapper
depends on the strategy used to migrate the database. In the D1 strategy, the wrapper is quite
simple: it reads one line of the table, converts the column values and produces a record. In the
D2 strategy, the wrapper can be very complex, since reading one record may require complex
joins and loops to retrieve all the data. Despite the potentially complex mapping between SPS
and TPS, which is completely encapsulated into the wrapper, the latter can be produced auto-
matically, as shown in [16]. A wrapper may induce computing and I/O overhead compared to
P2 and P3 strategies.

Thestatement rewritingstrategy (P2) also preserves the logic of the legacy program but
it replaces each legacy DMS-DML primitive statement with its equivalent in the target DMS-
DML. Each legacy DMS-DML instruction is replaced with several lines of code that may
comprise tests, loops and procedure calls. In our case study the number of lines increased
from 390 to almost 1000 when we applied the<D1,P2> strategy. The transformed program
becomes difficult to read and to maintain because the legacy code is obscured by the newly
added code. If the code must be modified, the programmer must understand how the pro-
gram was transformed to write correct code to access the database. When the structure of the
database is modified, the entire program must be walked through to change the database ma-
nipulation statements. In summary, this technique is unexpensive but degrades the quality of
the code. In addition, it is fairly easy to automate. As expected, this migration technique is
widely used, most often in the<D1,P2> combination.

The logic rewriting strategy (P3) changes the logic of the legacy program to explicitly
access the new database and to use the expressiveness of the new DMS-DML. This rewriting
task is complex and cannot be automated easily. The programmer that performs it must have an
in-depth understanding of the legacy database, of the new database and of the legacy program.
This strategy produces a completely renovated program that will be easy to maintain at least
as far as database logic is concerned.

9.3 System Migration Strategies

By combining both dimensions, we describe below typical applications for each of the strate-
gies that have been described.

• <D1,P1>: This approach produces a (generally) badly structured database that will suffer
from poor performance but preserves the program logic, notably because the database in-
terface is encapsulated in the wrapper. It can be recommended when the migration must be
completed in a very short time, e.g., when the legacy environment is no longer available.
Developing new applications should be delayed until the correct database is available.
This approach can be a nice first step to a better architecture such as that produced by
<D2,P1>. However, if the legacy database already is in 3NF, the result is close to that of
strategy<D2,P1>.

• <D2,P1>: This strategy produces a good quality database while preserving the program
logic. New quality applications can be developed on this database. The legacy programs
can be renovated later on, step by step. Depending on the impedance mismatch between
the legacy and target technologies, performance penalty can be experienced. For instance,
wrappers that simulate CODASYL DML on top of a relational database have to synchro-
nize two different data manipulation paradigms, a process that may lead to significant data
access overhead.

30 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

• <D1,P2>: Despite its popularity, due to its low cost, this approach clearly is the worst
one. It produces a database structure that is more obscure than the source one, and that
provides poorer performance. The programs are inflated with obscure data management
code that makes them complex and more difficult to read, understand and maintain. Such
a renovated system cannot evolve at sustainable cost, and therefore has no future. If the
legacy database already is in 3NF, the result may be similar to that of strategy<D2,P2>.

• <D2,P2>: Produces a good quality database, but the programs can be unreadable and dif-
ficult to maintain. It can be considered if no maintenance of the application is planned and
the programs are to be rewritten in the near future. If the wrapper overhead is acceptable,
the<D2,P1> strategy should be preferred.

• <D1,P3>: Data migration produces a very poor quality database that simulates the legacy
database. Adapting, at high cost, the program to these awkward structures is meaningless,
so that we can consider this strategy not pertinent

• <D2,P3>: This strategy provides both a database and a set of renovated programs of high
quality, at least as far as database logic is concerned. Its cost also is the highest. This is a
good solution if the legacy program language is kept and if the programs have a clean and
clear structure.

10 Conclusions

The variety in corporate requirements, as far as system reengineering is concerned, naturally
leads to a wide spectrum of migration strategies. This chapter has identified two main inde-
pendent lines of decision, the first one related to the precision of database conversion (schema
and contents) and the second one related to program conversion. From them, we were able
to identify and analyze six reference system migration strategies. The thorough development
of these technical aspects is the major contribution of this chapter since most of these aspects
have only been sketched in the literature [1].

Despite the fact that a supporting technology has been developed, and therefore makes
some sophisticated strategies realistic at an industrial level, we still lack sufficient experience
to suggest application rules according to the global corporate strategy and to intrinsic proper-
ties of the legacy system. As is now widely accepted in maintenance, specific metrics must be
identified to score the system against typical reference patterns. Such criteria as the complexity
of the database schema, the proportion of implicit constructs, the underlying technology, the
normalisation level or the redundancy rate, to mention only a few, should certainly affect the
feasibility of each migration strategy. Corporate requirements like performance, early avail-
ability of components of the renovated system, program independance against the database
structure, evolvability, skill of the development team, or availability of human resources are
all aspects that could make some strategies more valuable than others.

Though some conclusions could seem obvious at first glance, such as, strategy<D2,P3>
yields better quality results than strategy<D1,P2>, we have resisted providing any kind of
decision table that would have been scientifically questionable. Indeed, each strategy has its
privileged application domains, the identification of which would require much more analysis
than we have provided in this chapter. One important lesson we learned in this study is that
the quality of the target database is central in a renovated system, and is a major factor in the
quality of the programs, whatever the program transformation strategy adopted. For instance,
renovated program performance, maintenance costs and the readability of the programs to be
developed are strongly dependent on the quality of the database schema.

Migration of Legacy Information Systems 31

So far, we have developed a solid methodology and a sophisticated CASE environment
for database reverse engineering, wrapper development and automated program conversion
(according to P1 and P2 strategies). We have also built a toolset of code analysers, such as a
pattern matching engine, a dependency and data flow diagram analyser and a program slicer.
They allow us to find code sections that meet structural criteria such as data access sections
or the statement streams that influence the state of objects at some point of a program (aka
program slice).

At present time, we are exploring the automation of the P3 program conversion strategy
(Logic Rewriting). This strategy aims at adapting the logic of the legacy program to explicitly
access the new database and to use the expressiveness of the new DMS-DML. This rewrit-
ing task is complex and could not be fully automated. Only the identification of the file ac-
cess statements and the statements and data objects that depend on them can be automated.
These identification tasks relate to the program understanding realm, where such techniques
as searching forclichés, variable dependency analysis and program slicing (see [65, 58]) are
often favorite weapons.

AcknowlegmentsWe would like to thank the anonymous reviewers for their constructive
feedback on earlier versions of this chapter. Anthony Cleve received support from the Belgian
Région Wallonneand the European Social Fund via the RISTART project.

32 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

References

1. Brodie, M.L., Stonebraker, M.: Migrating Legacy Systems. Gateways, Interfaces, and the
Incremental Approach. Morgan Kaufmann Publishers (1995)

2. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: A taxonomy. IEEE
Software7 (1990) 13–17

3. Wiederhold, G.: Modeling and system maintenance. In: Proc. Int’l Conf. Object-Oriented
and Entity-Relationship Modeling, Berlin (1995)

4. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: Issues and
directions. IEEE Software16 (1999) 103–111

5. Tilley, S.R., Smith, D.B.: Perspectives on legacy system reengineering. Technical report,
Software Engineering Institute, Carnegie Mellon University (1995)

6. Wu, B., Lawless, D., Bisbal, J., Richardson, R., Grimson, J., Wade, V., O’Sullivan, D.:
The butterfly methodology: A gateway-free approach for migrating legacy information
systems. In: Proc. IEEE Conf. Engineering of Complex Computer Systems, Italy (1997)

7. Malton, A.J.: The software migration barbell. In: ASERC Workshop on Software Archi-
tecture. (2001)

8. Waters, R.C.: Program translation via abstraction and reimplementation. IEEE Computer
Society Trans. Software Engineering14 (1988) 1207–1228

9. Terekhov, A.A., Verhoef, C.: The realities of language conversions. IEEE Software17
(2000) 111–124

10. Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Müller, H., Mylopoulos, J.: Code
migration through transformations: an experience report. In: Proc. Conf. Centre for Ad-
vanced Studies on Collaborative research (CASCON), IBM Press (1998) 13

11. Yasumatsu, K., Doi, N.: Spice: A system for translating smalltalk programs into a C
environment. IEEE Computer Society Trans. Software Engineering21 (1995) 902–912

12. Martin, J., Müller, H.A.: Strategies for migration from C to Java. In: Proc. European
Conf. Software Maintenance and Reengineering (CSMR). (2001) 200–209

13. El-Ramly, M., Eltayeb, R., Alla, H.: An experiment in automatic conversion of legacy
Java programs to C#. In: Proc. of IEEE International Conference on Computer Systems
and Applications. (2006) 1037–1045

14. Stroulia, E., El-Ramly, M., Iglinski, P., Sorenson, P.: User interface reverse engineering
in support of interface migration to the web. Automated Software Engineering10 (2003)
271–301

15. Lucia, A.D., Francese, R., Scanniello, G., Tortora, G., Vitiello, N.: A strategy and an
eclipse based environment for the migration of legacy systems to multi-tier web-based
architectures. In: Proc. Int’l Conf. Software Maintenance (ICSM), Washington, DC, USA,
IEEE Computer Society (2006) 438–447

16. Warren, I.: The Renaissance of Legacy Systems: Method Support for Software-System
Evolution. Springer-Verlag, Secaucus, NJ, USA (1999)

17. Serrano, M.A., Carver, D.L., de Oca, C.M.: Reengineering legacy systems for distributed
environments. Systems and Software64 (2002) 37–55

18. Canfora, G., Santo, G.D., Zimeo, E.: Developing and executing Java AWT applications
on limited devices with TCPTE. In: Proc. Int’l Conf. Software Engineering (ICSE), New
York, NY, USA, ACM Press (2006) 787–790

19. Yeh, A.S., Harris, D.R., Reubenstein, H.B.: Recovering abstract data types and object
instances from a conventional procedural language. In: Proc. Working Conf. Reverse
Engineering (WCRE), Washington, DC, USA, IEEE Computer Society (1995) 227

20. Canfora, G., Cimitile, A., Munro, M.: An improved algorithm for identifying objects in
code. Software—Practice and Experience, Wiley26 (1996) 25–48

Migration of Legacy Information Systems 33

21. van Deursen, A., Kuipers, T.: Identifying objects using cluster and concept analysis. In:
Proc. Int’l Conf. Software Engineering (ICSE), Los Alamitos, CA, USA, IEEE Computer
Society Press (1999) 246–255

22. Girard, J.F., Koschke, R., Schied, G.: A metric-based approach to detect abstract data
types and state encapsulations. Journal on Automated Software Engineering6 (1999)
357–386

23. Sahraoui, H.A., Lounis, H., Melo, W., Mili, H.: A concept formation based approach to
object identification in procedural code. Journal on Automated Software Engineering6
(1999) 387–410

24. de Lucia, A., Lucca, G.A.D., Fasolino, A.R., Guerra, P., Petruzzelli, S.: Migrating legacy
systems towards object-oriented platforms. In: Proc. Int’l Conf. Software Maintenance
(ICSM), Los Alamitos, CA, USA, IEEE Computer Society (1997) 122

25. Zou, Y., Kontogiannis, K.: A framework for migrating procedural code to object-oriented
platforms. In: Proc. IEEE Asia-Pacific Software Engineering Conf. (APSEC), Los Alami-
tos, CA, USA, IEEE Computer Society (2001) 408–418

26. Marin, M., van Deursen, A., Moonen, L.: Identifying aspects using fan-in analysis. In:
Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA, IEEE Com-
puter Society (2004) 132–141

27. Tourwe, T., Mens, K.: Mining aspectual views using formal concept analysis. In: Proc.
Workshop Source Code Analysis and Manipulation (SCAM). (2004) 97–106

28. Tonella, P., Ceccato, M.: Aspect mining through the formal concept analysis of execution
traces. In: Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA,
IEEE Computer Society (2004) 112–121

29. Bruntink, M., van Engelen, R., Tourwe, T.: On the use of clone detection for identify-
ing crosscutting concern code. IEEE Computer Society Trans. Software Engineering31
(2005) 804–818

30. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In: Proc.
European Conf. Software Maintenance and Reengineering (CSMR), Los Alamitos, CA,
USA, IEEE Computer Society (2006) 3–14

31. Liam O’Brien, Dennis Smith, G.L.: Supporting migration to services using software
architecture reconstruction. In: Proc. IEEE Int’l Workshop on Software Technology and
Engineering Practice (STEP). (2005) 81–91

32. Jahnke, J.H., Wadsack, J.P.: Varlet: Human-centered tool support for database reengineer-
ing. In: Proc. Working Conf. Reverse Engineering (WCRE). (1999)

33. Jeusfeld, M.A., Johnen, U.A.: An executable meta model for re-engineering of database
schemas. In: Proc. Conf. on the Entity-Relationship Approach, Manchester (1994)

34. Menhoudj, K., Ou-Halima, M.: Migrating data-oriented applications to a relational data-
base management system. In: Proc. Int’l Workshop on Advances in Databases and Infor-
mation Systems, Moscow (1996)

35. Meier, A., Dippold, R., Mercerat, J., Muriset, A., Untersinger, J.C., Eckerlin, R., Ferrara,
F.: Hierarchical to relational database migration. IEEE Software11 (1994) 21–27

36. Meier, A.: Providing database migration tools - a practitioner’s approach. In: Proc. Int’l
Conf. Very Large Data Bases (VLDB), San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1995) 635–641

37. Behm, A., Geppert, A., Dittrich, K.: On the migration of relational schemas and data
to object-oriented database systems. In: Proceedings of Re-Technologies in Information
Systems, Klagenfurt, Austria (1997)

38. Missaoui, R., Godin, R., Sahraoui, H.: Migrating to an object-oriented databased using
semantic clustering and transformation rules. Data Knowledge Engineering27 (1998)
97–113

34 Jean-Luc Hainaut, Anthony Cleve, Jean Henrard, and Jean-Marc Hick

39. Bianchi, A., Caivano, D., Visaggio, G.: Method and process for iterative reengineering of
data in a legacy system. In: Proc. Working Conf. Reverse Engineering (WCRE). (2000)
86–

40. Visaggio, G.: Ageing of a data-intensive legacy system: symptoms and remedies. Journal
of Software Maintenance13 (2001) 281–308

41. Henrard, J., Hick, J.M., Thiran, P., Hainaut, J.L.: Strategies for data reengineering. In:
Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA, IEEE Com-
puter Society (2002) 211–220

42. Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wad, V., O’Sullivan, D., Richardson, R.:
Legacy system migration: A legacy data migration engine. In Experts, E.C.C., ed.: Proc.
Int’l Database Conf. (DATASEM’97), Brno, Czech Republic (1997) 129–138

43. Hainaut, J.L., Englebert, V., Henrard, J., Hick, J.M., Roland, D.: Database reverse en-
gineering: From requirements to care tools. Automated Software Engineering3 (1996)
9–45

44. Hainaut, J.L.: The transformational approach to database engineering. In Lämmel, R.,
Saraiva, J., Visser, J., eds.: Generative and Transformational Techniques in Software En-
gineering. Volume 4143 of Lecture Notes in Computer Science., Springer-Verlag (2006)
95–143

45. Hainaut, J.L.: Specification preservation in schema transformations - application to se-
mantics and statistics. Data Knowledge Engineering19 (1996) 99–134

46. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design : An Entity-Relationship
Approach. Benjamin/Cummings (1992)

47. Hainaut, J.L., Henrard, J., Hick, J.M., Roland, D., Englebert, V.: Database design recov-
ery. In: Proc. Int’l Conf. Advances Information System Engineering (CAiSE). Volume
1080 of Lecture Notes in Computer Science., Springer-Verlag (1996) 272–300

48. Hick, J.M., Hainaut, J.L.: Database application evolution: A transformational approach.
Data & Knowledge Engineering59 (2006) 534–558

49. Cleve, A., Hainaut, J.L.: Co-transformations in database applications evolution. In: Gen-
erative and Transformational Techniques in Software Engineering. Volume 4143 of Lec-
ture Notes in Computer Science. Springer (2006) 409–421

50. Lämmel, R.: Coupled software transformations (ext. abstract). In: Proc. Int’l Workshop
on Software Evolution Transformations (SETra). (2004)

51. Hainaut, J.L.: Introduction to database reverse engineering. LIBD Publish. (2002)http:
//www.info.fundp.ac.be/ ∼dbm/publication/2002/DBRE-2002.pdf .

52. Hainaut, J.L., Hick, J.M., Henrard, J., Roland, D., Englebert, V.: Knowledge transfer in
database reverse engineering: A supporting case study. In: Proc. Working Conf. Reverse
Engineering (WCRE). (1997)

53. Rahm, E., Do, H.: Data cleaning: Problems and current approaches. Data Engineering
Bulletin 23 (2000) 3–13

54. Sneed, H.M.: Encapsulation of legacy software: A technique for reusing legacy software
components. Annals of Software Engineering9 (2000) 293–313

55. Thiran, P., Hainaut, J.L., Houben, G.J., Benslimane, D.: Wrapper-based evolution of
legacy information systems. ACM Trans. Software Engineering and Methodology15
(2006) 329–359

56. Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J.: A query translation
scheme for rapid implementation of wrappers. In: Proc. Int’l Conf. Declarative and
Object-oriented Databases. (1995)

57. DB-MAIN: The DB-MAIN official website. http://www.db-main.be (2006)
58. Henrard, J.: Program Understanding in Database Reverse Engineering. PhD thesis, Uni-

versity of Namur (2003)

Migration of Legacy Information Systems 35

59. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.T.K., Klint, P.,
Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The ASF+SDF Meta-
Environment: A component-based language development environment. In Wilhelm, R.,
ed.: Compiler Construction (CC ’01). Volume 2027 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2001) 365–370

60. van den Brand, M., Klint, P.: ASF+SDF Meta-Environment User Manual. (2005)
61. Delcroix, C., Thiran, P., Hainaut, J.L.: Transformational approach to data reengineering.

Ingénierie des Systèmes d’Information (2001) (in French).
62. Lämmel, R., Verhoef, C.: Semi-automatic Grammar Recovery. Software—Practice &

Experience31 (2001) 1395–1438
63. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems12 (1990) 26–60
64. Cleve, A., Henrard, J., Hainaut, J.L.: Data reverse engineering using system dependency

graphs. In: Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA,
IEEE Computer Society (2006) 157–166

65. Weiser, M.: Program slicing. IEEE Computer Society Trans. Software Engineering10
(1984) 352–357

