
Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 1

CONTRIBUTION TO A THEORY OF DATABASE REVERSE ENGINEERING

J-L. Hainaut, M. Chandelon, C. Tonneau, M. Joris

Institut d'Informatique, University of Namur
rue Grandgagnage, 21 - B-5000 Namur (Belgium)

email : jlh@info.fundp.ac.be - fax : +32 81-724967

Abstract
The paper proposes both a general framework and specific
techniques for file and database reverse engineering, i.e.
recovering its conceptual schema. The framework relies on
a process/product model that matches formal as well as
empirical design procedures. Based on the analysis of
database design processes, two major phases are defined,
namely Data structure extraction and Data structure
conceptualization. For each of them, a set of activities is
proposed. Most of these activities can be described as
transformation and integration of specifications.

1. INTRODUCTION

Considering the proliferation of comprehensive database
design methods and database-oriented CASE tools,
database forward engineering appears much more mature
than its processing counterpart. This fact is easy to explain.
The domain is more restricted and offers less freedom
while the requirements are better understood. In addition
(and probably consequently) a fairly comprehensive and
realistic database theory has now been made available for
practitioners, a fact that cannot be claimed for most SE
formal approaches.

An increasing number of CASE tools offer some database
reverse engineering (DBRE) functionalities (let us mention
the Bachman re-engineering toolset only). Though they
ignore many of the most difficult aspects of the problem,
these tools provide their users with invaluable help to carry
out DBRE more effectively [R1].

Surprisingly enough, DBRE has raised little interest in the
DB scientific community. By browsing major information
sources such as ACM TODS, VLDB and ER conferences
proceedings, or Knowledge & Data Engineering, one can
hardly collect twenty papers more or less related with
DBRE. Let us mention some references :

- RE of standard files : [C1], [N2], [D1]

- RE of IMS databases : [N1], [W1]

- RE of CODASYL databases : [B2]

- RE of relational databases : [C2], [N1], [D2], [S2], [F1]

Most of these studies appear to be limited in scope (most
often dedicated to one data model), and are generally based
on severely unrealistic assumptions on the quality and
completeness of the data structures to reverse engineer.
For instance, they suppose that,
- all the conceptual specifications have been translated

into data structures and constraints,
- the translation is rather straightforward (no tricky

representations),
- the schema has not been deeply restructured for

performance objectives or for any other requirements,
- a complete physical schema of the data is available,
- names have been chosen rationally (e.g. a foreign key

and the referenced primary key have the same name).

The situation should rapidly evolve, as testified for instance
by [B2], the first popular reference that includes several
sections dedicated to DBRE. However, a general theory
supporting DBRE of real applications has yet to be built.
This paper is a contribution to this future theory.

Roughly speaking, reverse engineering (RE) a piece of
software consists in reconstructing its functional and
technical documentation, starting mainly from the source
text of the programs [I1] [H3]. Recovering these
specifications is generally intended to convert, restructure,
maintain or extend old applications. It is also required
when developing a Data Administration function.

In short, RE tries to answer the question : what are possible

specifications of this implementation1. The problem is
particularly complex with old and ill-designed applications.
In this case, not only no decent documentation (if any) can
be relied on, but the lack of systematic methodologies for

1 A secondary, but also important question is often how the
implementation got to be what it is, i.e. elicitating the functional
and technical requirements together with the reasonings through
which they have been satisfied.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 2

designing and maintaining them have led to tricky and
obscure code. Therefore, RE has long been recognized as a
complex, painful and prone-to-failure activity, in such a
way that it is simply not undertaken most of the time,
leaving huge amounts of invaluable knowledge buried in
the programs, and therefore definitely lost.

In data-oriented applications, the complexity can be
broken down by considering that the files or databases can
be reverse engineered (almost) independently of the
procedural parts.

This proposition to split the problem in this way can be
supported by the following arguments :

- the semantic distance between the so-called conceptual

specifications2 and the physical implementation is most
often narrower for data than for procedural parts;

- the data are generally the most stable part of
applications;

- even in very old applications, the semantic structures
that underlie the file structures are mainly procedure-
independent (though the physical structure is highly
procedure-dependent);

- reverse engineering the procedural part of an application
is generally easier when the semantic structure of the
data has been elicited.

Therefore, concentrating on reverse engineering the data
components of the application first can be more successful
than trying to cope with the whole application. Though RE
data structures still is a complex task, it appears that the
current state of the art provides us with sufficiently
powerful concepts and techniques to make this enterprise
more realistic.

This paper analyzes the problems of reverse engineering
data structures in data-oriented applications. It proposes a
systematic and general framework, based on formal
techniques and heuristics, for solving the problem of
recovering a possible conceptual schema of an existing
database. The reader is supposed to be somewhat
acquainted with database concepts; reference [E1] is
recommended otherwise.

2. DATABASE DESIGN REVISITED
Though database design has been one of the major
theoretical and applied research domain in software
engineering in the last two decades, and though it can be
considered as a now fairly well mastered problem, we are

2 In the database realm, the abstract, implementation-
independent specification of a database is called its conceptual
schema.

faced here with files and database3 that have not been built
according to well structured methodologies. Tackling the
reverse engineering of a database needs a deep
understanding of the forward process, i.e. database design,
not only according to standard and well formalized
methodologies, but above all when no such rigourous
methods have been followed. In other words, we intend to
grasp the mental rules that make the intuitive behaviour of
practitioners. Our approach should not be normative, as in
forward engineering, where practitioners are told how to
work, but rather descriptive, since we have to find out how
they have worked.

The analysis is based on the following assumptions about
database design :

- a database must satisfy a limited set of requirements
such as : correctness, user acceptance, time performance,
space performance, availability, reliability, compliance
with a data manager, hardware constraints, security,
compatibility with organizational constraints, conformity
with a methodological standard, etc. Satisfying each
kind of requirements constitutes an identifiable design
problem.

- solving each of these design problems is the objective of
an identifiable design process; each process produces
design products, i.e. specifications of the solution at a
given level of abstraction;

- designing any database, whatever the methodology (or
absence thereof), requires to solve the same collection of
problems; therefore, designing a database consists in
carrying out a limited set of processes; in some
unstructured design approaches, some processes can be
by-passed while in others several processes are
conducted in parallel.

- each design process is based on specific concepts,
techniques and reasonings;

- each design process can be expressed as a
transformation applied on input products and yielding
output products; the transformation consists in adding
constructs to the input specifications, removing some
constructs, or changing the format of these
specifications.

These assumptions are the basis for a generic model of
database design activities that gives us some useful hints
on how to conduct the reverse engineering of an existing
database. Indeed, it suggests to search the description of
the database for traces of each specific design process,
instead of trying to rebuild the conceptual schema in a

3 From now on, the term database will encompass any
permanent, structured, data collection on secondary storage,
including standard files.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 3

single step. In addition, it allows for the specification of
both non standard and empirical design practices.

In the limited scope of this paper, we shall consider a
simplified generic model of database design. Figure 2.1
depicts the organization of the main design processes and
the design products. According to this model, the processes
that can be carried out and the products they transform and
produce are as follows :

L1: Schema
simplification

L2: DMS-independent
Optimization

L3: DMS model
Translation

L4: DMS-dependent
Optimization

Conceptual schema

Simplified
Conceptual schema

DMS-independent
optimized schema

DMS-compliant
optimized schema

P1: DMS-DDL
translation

P2: DMS-dependent
physical tuning

P3: View derivation

P4: DDL/Host-Lang.
coding of views

Views

DMS-DDL schema
Host Lang fragments

DMS physical param

DMS-compliant
optimized schema

DDL/Host-lang.
expression of views

Figure 2.1 - Some important design processes and products of
database design. The processes have been classified into the
logical and physical phases.

Conceptual phase : user requirements are collected,
analyzed and formalized into a conceptual schema. Since it
has no impact on reverse engineering, this activity is not
shown in figure 2.1.

Logical phase : the schema can be expressed (L1) into a
simpler model (e.g. Bachman's model), better suited for
optimization reasonings; it can be optimized independently
of the target DBMS (L2); it is then translated according to
the target data model (L3); at this stage, it can be further
optimized according to DMS-dependent rules (L4).

Physical phase : the logical schema is expressed according

to the DDL4 of the DMS and to procedural languages
(P1); its physical parameters are set through DMS-
dependent physical tuning (P2); the view needed by the
application programs are derived (P3) and expressed
partly into the view DDL, and partly into the host
language.

3. WHAT MAKES DBRE SO DIFFICULT ?
The final, executable description of the database, i.e. the
DDL/Host language expression of schemas and views, can
be seen as the result of a chain of transformations that have
degraded the origin conceptual schema. Let's reexamine
each process of the generic model of database design as far
as it introduces some degradation into the conceptual
schema.

Process L1 : the conceptual specifications are preserved,
but they are expressed with poorer structures, leading
to a less concise and readable schema. For instance, n-
ary relationship types have been transformed into
binary ones, multivalued attributes have been reduced
to single-valued ones, or IS-A links are transformed
into one-to-one relationship types.

Process L2 : the schema can be restructured according to
design requirements concerning access time,
distribution, data volume, availability, etc. The
conceptual specifications are preserved, but the schema
is obscured due to non-semantic restructuration, such as
structure splitting or merging, denormalization or
structural redundancy.

Process L3 : the data structures are transformed in order to
make them compliant with the model of the target
DMS. Generally, this process deeply changes the
appearance of the schema in such a way that the latter
is still less readable. For instance, in standard files
(resp. relational DBMS) many-to-many relationship
types are transformed into record types (tables) while
many-to-one relationship types are transformed into
reference fields (foreign key). In a CODASYL schema,
a secondary identifier is represented by an indexed
singular set. In a TOTAL or IMAGE database, a one-
to-many relationship type between two major entity
types is translated into a detail record type. Frequently,
names have to be converted due to the syntactical
limitations of the DMS or host languages.

On the other hand, due to the limited semantic
expressiveness of older (and even current) DMS, this

4 DMS stands for Data Management System (including
Database Management Systems or DBMS. The Data Description
Language (DDL) is the language of the DMS through which the
data structures are declared or defined.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 4

translation is seldom complete. It produces two subsets
of specifications : the first one being strictly DMS-
compliant while the second one includes all the
specifications that cannot be taken in charge by the
DMS. For instance, referential constraints cannot be
processed by standard file managers. In principle, the
union of these subsets includes the conceptual
specifications.

Process L4 : the schema is restructured to match design
criteria such as access time. This restructuring depends
on the specific behaviour of the DMS. Just like process
L2, it makes the schema less readable. The semantic
contents of the DMS-compliant structure are preserved.

Process P1 : only the first subset of specifications
collecting strictly DMS-compliant structures can be
translated into the DDL of the DMS. The discarded
specifications should be either ignored, or translated
into languages, systems and procedures that are out of
control of the DMS (e.g. host language, user interface
manager, human procedures, etc). From now on, the
schema of the database generally represents a strict
subset only of the conceptual specifications.

Another phenomenon must be pointed out, namely
structure hiding. When translating a data structure
into DMS-DDL, the designer (or programmer) may
choose to hide some information, leaving to the host
language the duty to recover this information. The
most widespread example consists in declaring some
subset of fields (or even all the fields) of a record type
(or segment, or table) as a single, unstructured, field;
recovering the hidden structure can be made by storing
the unstructured field values into a host program
variable that has been given the adequate structure.

Finally, let's observe that the DMS-DDL schema is not
always materialized. Many standard file managers, for
instance, doesn't offer any central way to record the
structure of files, e.g. in a data dictionary.

Initial record structure
 01 CUSTOMER
 02 C-KEY pic X(14)
 03 ZIP-CODE pic X(8)
 03 SER-NUM pic 9(6)
 02 NAME pic X(15)
 02 ADDRESS pic X(30)
 02 ACCOUNT pic 9(12)

Coded record structure
 01 CUSTOMER
 02 C-KEY pic X(14)
 02 filler pic X(57)

Figure 3.1 - An example of structure hiding. The decomposition
of both the key part and the data part are replaced by anonymous

data structures in the actual coded structure. Though it can
simplify data description and data usage, this frequent technique
makes data structure considerably more complex to recover.

Process P2 : works at the internal level, and doesn't modify
the schema as it is seen by the programmer.

Process P3 : each view is dedicated to a limited set of
application programs (or users). In principle, the set of
the views cover all the data structures they derive from.

Process P4 : this process is similar to P1. Each view is
expressed into a mixture of DDL texts, host language
procedures, screen/report specifications, etc. Here too,
the principle of structure hiding can be applied heavily,
specially in case of standard file managers. Figure 3.1
is an illustration of this practice. Figure 3.2 shows a
common way to translate lost referential integrity
constraints into the procedural part of the program.

 fd F-CUST;
 record is CUSTOMER.
 01 CUSTOMER.
 02 CNUM pic X(14).
 02 CDATA pic X(57).

 fd F-ORD;
 record is ORDER.
 01 ORDER.
 02 ONUM pic 9(8).
 02 O-DATE pic X(12).
 02 CUST pic X(14).

working storage section
 01 CN pic X(14).
 01 C.
 02 CNUM pic X(14).
 02 filler pic X(57).
 01 O.
 02 ONUM pic 9(8).
 02 O-DATE pic X(12).
 02 CUST pic X(14).

procedure division (in pseudo-code)
 ...
 read CUSTOMER(CNUM = X) into C
 if found(C) then
 O.ONUM := ...
 O.DATE := ...
 O.CUST := C.CNUM
 write O into ORDER
 endif
 ...

Figure 3.2 - Expressing non-DMS structural parts (here a
referential constraint) by procedural statements. The latter,
sometimes centralized into a single file management module,
check the non-violation of constraints before data insert, update
and delete. These sections are often written according to regular
patterns such as that presented here.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 5

Observation : in poor DMS, like most standard file
managers, the result of process P4 is the only
information that is still available about the implemented
data structures. This fact plus structure hiding make the
reverse engineering of standard file an exercise particularly
challenging.

Let's draw some conclusions from this analysis :
- producing an executable schema of a database can be

seen as the step-by-step transformation of its conceptual
schema.

- each transformation introduces some sort of degradation
in the schema that makes it less complete, simple,
intuitive and readable.

- the kind of degradation depends on the objective of the
design process.

4. GROSS ARCHITECTURE OF A DBRE
METHODOLOGY
Let's first observe that reverse engineering a database is
concerned with the design decisions that have been taken
during the logical and physical phases only. The proposed
approach is based on playing backward these two phases,
starting from the results of the latter one. Grossly speaking,
the RE analyst is faced with the following problem :

• given the DDL/host language expression of existing
data structures (global schema and/or views),

• given known operational requirements (e.g. the DMS,
performance requirements, etc),

∅ find a possible conceptual schema that could lead to
these data structures.

The process can be split into two main phases, rather
independent from each other :

∅ retrieve the existing data structures from their DDL/host
language expression, and

∅ retrieve a possible conceptual schema that defines the
semantics that underlies these data structures.

The first process is the reverse of the physical phase, and
has been named Data structure extraction. The second one
is the reverse of the logical phase, and has been named
Data structure conceptualization. In a first approach, we
can consider that they are conducted sequentially.
According to the analysis developed above, the gross
organization of the method can be sketched as in Figure
4.1.

DDL/Host Lang.
expression of

schema & views

DMS-compliant
optimized schema

Possible conceptual
schema

Data structure
Extraction

Data structure
Conceptualization

Figure 4.1 - Gross organization of database reverse engineering
activity.

In low level DMS (e.g. standard file managers), the starting
point generally is made up of the DDL/Host language
expression of the views. In higher level DMS, the input
information generally consists of the DDL expression of
the global schema. In both cases, these expressions should
be augmented with the translation of discarded
specifications. In some organizations, the data structure
descriptions are available through a data dictionary system,
making the first process a bit easier.

5. DATA STRUCTURE MODELLING FOR DBRE
Before going into deeper details, we need supporting
models to express data structures at the different levels of
abstraction. Due to the great flexibility that must be
provided in conducting the RE processes, we propose a
unique, layered, data model. Through this unique model,
both a DMS-compliant optimized schema, and a conceptual
schema (together with schemas at all the intermediate
levels) will be expressed in a uniform way. This feature
will allow us to use very general transformational
processes, whatever the abstract level of the products
involved, and to describe a great variety of reverse

engineering behaviours or strategies5.

This model is based on the Entity-Relationship model [C3]

[B2]. It is intended first to express conceptual structures6

by means of the following concepts :

- entity type (ET) and n-ary relationship type (RT),

- ET- and RT-attribute,

- ET-, RT- and attribute identifier,

5 For instance those which allow some parts of the schema being
conceptualized while others are still at the physical level.
6 This model is a bit more complex than usual. This is due to
the semantic richness of the technical constructs that are available
in operational DMS, and that are not always used in strict top-
down database design methodologies.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 6

- integrity constraints, such as inclusion, exclusion,
redundancy, implication,

- etc.

In logical and physical schemas, these concepts are to
describe technical structures as well. For instance, an
entity type will describe a relational table in an SQL
database, a record type in a COBOL file or in a CODASYL
database and a segment type in an IMS database.
Similarly, an attribute will be the abstraction of a field or of
a column, and a relationship type will be the abstraction of
a CODASYL set type, IMS parent/child relationship,
TOTAL / IMAGE path or ADABAS file coupling.

In addition, this model has been given constructs allowing
the definition of files, access paths, access keys (abstraction
of indices, calc keys, etc), field redefinition, physical
position, etc, in order to express more technical data
structures, such as those found in DMS-compliant
optimized schemas for instance, and to support reasoning at
the physical level. Finally, some procedural concepts that
are relevant when dealing with file and record processing
are also described in the model. Let's only mention the
notions of application, source file, module, variable,
transfer instruction (MOVE, CALL USING, READ INTO, etc),
condition name, etc.

6. DATA STRUCTURE EXTRACTION
The data structures of the DMS/Host language optimized
schema, are found out by analysing the source code of the
schemas and programs. The result of this process is a
(hopefully) complete, formalized, model of the physical
data structures, as they are perceived by users and
programmers, according to the DMS model. For some
DMS, the analysis is rather straightforward (e.g.
CODASYL, IMS or relational), while for others, it requires
considerable work and knowledge (e.g. standard files).

The problem is twofold :

- retrieve the explicit and implicit (hidden) data structures
that are under the control of the DMS,

- retrieve the discarded specifications (generally integrity
constraints ignored by the DMS).

6.1 Retrieving the DMS data structures
The difficulty of the first problem is dependent on the
DMS. In true DBMS, the description of the global DMS-
compliant schema is generally available, either as a DDL
text, or in a data dictionary (e.g. system catalog tables). In
lower-level DMS, such as standard file managers, the
problem can be much more complex. Indeed, the global
schema, generally file and record structures, is not under
the control of the DMS, and is only available in the
(generally lost or obsolete) documentation of the

application. The only description available is made up of
file and record descriptions included in the source
programs. Since these descriptions can be, and generally
are, partial descriptions only, reverse engineering the data
structures used by a source program produces one view of
the global schema only.

Two difficulties must be solved when carrying out this
process : (1) an application program uses several files, a
subset only of which concern the database; print, output,
temporary, update or sort files must be recognized and

discarded7; (2) due to the structure hiding habits of many
programmers, the actual structure of a record type or of a
field can only be elicited by analyzing how and where
records/fields are used; this means for example examining
the control flow of the procedural parts of the program, as
illustrated in figure 6.1, or analyzing the entry forms and
the output reports/forms.

program file
01 CUSTOMER
 02 C-KEY pic X(14)
 02 filler pic X(57)

working storage section
01 IN-CUST
 02 ZIP-CODE pic X(8)
 02 SER-NUM pic 9(6)
 02 C-DATA pic X(57)

01 EXPLODE1
 02 NAME pic X(15)
 02 ADDRESS pic X(30)
 02 ACCOUNT pic 9(12)

procedure division
...

read CUSTOMER into IN-CUST.
...

move C-DATA of IN-CUST into EXPLODE1.
...

Figure 6.1 - Hidden structure elicitation. The original record
decomposition is recovered through data flow analysis.

6.2 Retrieving discarded specifications
This process is mainly based on the analysis of the
procedural parts of the applications, be they program
sections or triggered actions associated with user interface
forms or with database events. These procedures mainly
check integrity constraints and compute derived data.
Their structure is generally simple and standard, and can be
recognized easily, provided we can locate them in the huge

7 Unless these files may give hints on the schema when they
store data from the database.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 7

amount of source code. Among the main constraints the
texts have to be searched for, let's mention the referential
constraints (in standard files and in relational databases),
the identifiers (in sequential files and tables, in network
databases), one-to-one relationship types (when many-to-
one only are available), exclusive structures and
redundancy constraints.

In some circumstances, the data themselves have to be
analyzed. Indeed, evidence of uniqueness properties
(identifiers), referential integrity, fine-grained field
decomposition or value domain, can be found out by
careful examination of the data.

6.3 Integrating views
When the previous processes have recovered views of the
data structures only, e.g. in low-level DMS, two strategies
are possible :

- integrate these views to obtain a global schema, then
conceptualize it;

- conceptualize each view, then integrate the conceptual
views obtained in this way.

The first strategy allows to reduce as early as possible the
number of schemas to be conceptualized (collecting more
than 100 views is not uncommon in large applications). In
addition, powerful heuristics can be used at this level,
based on position and length of data fields in the records,
multi-record type files or the use of compile-time
statements (e.g. COBOL copy or C include).
However, integrating physical views can prove complex
when they include many performance-oriented constructs
such as redundancies, denormalized structures and other
tricks. The second strategy implies conceptualizing a
larger number of (often similar, if not identical) views, and
dropping useful hints from the physical structures.
However, view integration is easier, since it corresponds to

processes that are now standard8 [B1], [B3], [S1].

7. DATA STRUCTURE CONCEPTUALIZATION
The objective of this process is to discard technical
constructs from the DMS-compliant schema, to reduce
DBMS-dependent constructs, to eliminate performance-
oriented data redundancies, to make hidden conceptual data
structures explicit, and to produce a clear, normalized and
natural conceptual schema.

7.1 Schema cleaning and renaming
The schema may include constructs that do not pertain to
the database itself. Structures for transient data, state

8 There are currently no literature on integrating physical data
structures.

variables of programs, as well as dead parts must be
detected and eliminated. This process requires not only
domain knowledge, but also information on the structures
of the programs. In addition, the name of the data
structures may need translation for various reasons :
weakness of the DMS syntax conventions, reserved words
(DMS, host language, local standard), multi-lingual
naming, heterogeneous and undisciplined naming
conventions, etc.

7.2 Elimination of DMS-specific optimization constructs
The schema is examined for optimization constructs that

are specific to the origin DMS9. A deep knowledge in the
physical behaviour of the DMS is required. Some
examples : field padding for address alignment, record
splitting when the size is greater than page size, grouping
frequently accessed records in the same database space
stored in a high-speed device, defining non-information-
bearing set types in CODASYL databases, etc. These
constructs must be recognized and discarded.

7.3 Un-translating the DMS-compliant schema
Producing a DMS-compliant schema implies translating the
data structures that are not supported by the DMS.
Detecting such transformed structures, and replacing them
by their conceptual origins lead to a higher-level schema.
A good knowledge of the forward transformation rules
generally used when translating into the DMS model is
necessary. The biggest problem is that there is generally no
1-1 mapping between the conceptual structures and their
DMS-compliant translation. A conceptual construct can be
translated into several DMS structures, while several
different conceptual constructs can be translated into the
same DMS structure.

7.4 Elimination of DMS-independent optimi-zation
constructs
Some optimization practices are valid whatever the target
DMS. Examples : merging/splitting record types, derived
attributes, denormalization. Recognizing them allows one
to discard them.

7.5 Expressing the schema in a higher-level model
Eliminating optimization-oriented structures and retrieving
the conceptual origin of each construct of the DMS schema

9 In all generality, performance and technical efficiency are only
examples of requirements that can lead to schema restructuring.
Availability, security, data modularity, distribution, etc, are other
examples of requirements that will shape the final schema. Being
aware of these requirements should ease the reverse engineering
process.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 8

can produce a schema that is still awkward and unclear. By
restructuring this schema, it is possible to make it more
readable and more natural. Replacing binary structures by
n-ary ones, extracting complicated compound multivalued
attributes to replace them by entity types, defining generic
entity type by factoring similar semantic properties of a set
of entity types, generating specific entity types from
optional, exclusive attributes and roles, are some examples
of transformations that can help to meet these objectives.

7.6 Integrating schemas
When the views extracted from the source programs have
been conceptualized, they should be merged once they have
reached this state. Schema integration will also occur when
reverse engineering an information system consisting of
more than one database, or a heterogeneous database (such
as an IMS database + VSAM files).

8. DBRE TECHNIQUES
Several major DBRE processes are based on a limited set
of common techniques. We shall describe shortly three of
them, namely schema transformation, redundancy
elimination and schema integration.

8.1 Schema transformation
Schema transformation is the basic tool in many database
design activities. An in-depth discussion of the concept can
be found in [H1] and [H2]. Grossly speaking, a
transformation consists in replacing a data structure with
another one which has some sort of equivalence with the
former. The most important equivalence that is sought is
semantic equivalence. In this case, both schemas express
exactly the same semantics; in addition such a
transformation is said to be reversible, i.e. it exists another,
inverse, transformation that transforms the final schema
into the former one.

In most cases, the final structure satisfies a criterion the
former doesn't meet. DMS compliance, space or time
efficiency, normalization are such criteria.

In the database forward engineering model we rely on, the
final schema is obtained by successive transformations of
the conceptual schema. When transformations guaranteeing
semantic equivalence have been used, reverse engineering
their resulting schema can be done by using the inverse
transformation.

1-N 1-1
IN

EMPLOYEE
Enum
Ename

EMPLOYER
Emp-Name
Emp-Address

EMPLOYEE
Enum
Ename
Emp-Address
Emp-Name

Emp-Name --> Emp-Address

Figure 8.1 - Read top-down, the transformation denormalizes the
schema, leading to better access performances, or decreasing the
number of entity types for instance. It is a typical design
transformation that can be used in activities L2 and L4. Read
bottom-up this transformation eradicates a transitive FD, and
therefore normalizes the attribute structure of EMPLOYEE. It is a
typical reverse engineering transformation.

We shall illustrate the concept with an example of
transformation that eliminates a transitive functional
dependency that holds into the attributes of an entity type
(Figure 8.1), and with another example that tends to make a
schema more relational (Figure 8.2). Both
transformations ensure semantic equivalence.

0-N 1-1
IN

EMPLOYEE
Enum
Ename

EMPLOYER
Emp-Name
Emp-Address

EMPLOYEE
Enum
Ename
Emp-Name

EMPLOYER
Emp-Name
Emp-Address

EMPLOYEE.Emp-Name in EMPLOYER.Emp-Nam

Figure 8.2 - Read top-down, this transformation allows the
representation of many-to-one relationship types with reference
attributes, a construct that is compatible with relational databases
and standard files (used in activity L3). Read bottom-up, it allows
the explicitation of relationship types in a reverse engineering
activity.

It can be shown that a fairly small number of standard
transformations can explain how most optimized DMS-
compliant schemas encountered in practice have been
obtained. Understanding their mechanism, and how they
relate with optimization and translation reasonings is
essential for reverse engineering complex schemas.

8.2 Data redundancy elimination
Introducing data redundancies in a database schema is very
common. The main objectives are better access
performances, higher availability or recovery (they are

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 9

used in processes L2 and L4). Recognizing redundant
structures, and understanding their fundamental
mechanisms is important in the reverse engineering
activities.

There are two basic techniques for defining redundancies in
a schema :

- through structural redundancy, a new object type B is
added into the schema in such a way that instances of B
can be computed from instances of other object types of
the schema. Examples : attribute Total-Amount in
entity type ORDER, attribute Number-of-
Employees in entity type EMPLOYER.

- denormalization consists in grouping independent fact
types in such a way that their instances are available
simultaneously. This construct reduces the number of
aggregates (entity or relationship type) and may decrease
the access time. See example in Figure 8.1.

8.3 Schema integration
Schema (or view) integration is a design domain that
studies the merging of specifications, i.e. schemas, whose
real worlds may overlap. This merging is not a pure
addition of these source schemas since each fact/object of
the real world must be represented only once in the
resulting schema. Given a collection of source schemas,
several integration strategies have been proposed : merging
two schemas at a time or all the schemas in parallel,
producing a new schema or augmenting one of the source
schema. Binary integration is generally carried out in four
steps :

- preparation of the schema (optional) : restructuration of
some schemas in order to make the merging easier; in
some techniques, it allows to automate the next two
steps;

- correspondence : an object type in one schema is related
to an object type in the other schema to state the
similarity of the real world objects/facts they describe.
The kind of this relationship is stated : they are the same,
one is included in the other one, they have a common
generic type, etc;

- merging : the object types in correspondence are merged,
together with their relationships with the other object
types of the schemas;

- restructuration (optional) : the final schema is refined in
order to make it simpler and more readable.

In reverse engineering, schema integration can occur at
different levels. At the conceptual level (merging
conceptualized views), the problem is fairly standard. At
lower levels, such as integrating DMS-compliant views, the
problem can be somewhat more complex, because the
schemas include non-semantic constructs.

9. SPECIFIC DBRE METHODOLOGIES
The principles that have been presented so far are not
dedicated to specific RE approaches, nor to specific DMS.
With this respect, they must be perceived as a generic
framework in which such specialized approaches can be
defined. It is fairly easy to state the dependency of each
RE process on specific contextual aspects. For instance,
• processes 6.1, 6.2, 7.1 depend on corporate programming

standards,
• processes 6.3, 7.6 depend on the number and similarity

of the views,
• processes 6.1, 6.2, 6.3, 7.1, 7.2, 7.3 depend on the DMS,
• processes 7.2, 7.4 depend on optimization requirements,
• process 7.5 depends on corporate analysis standards.

Specializing these processes according to these criteria
provides us with a specific DBRE method. It should be
noted that this specialization can rely mainly on the
genericity of such components as the unique data model
and of the schema transformations. For instance,
specialization according to the DMS can be defined by
specializing the data model (it can be limited to the
structures known by the DMS), and by selecting the schema
transformations that could have been used by the database
designer for translating into this DMS. Such
methodological specialization has been studied in [H2] for
DB forward engineering.

10. CONCLUSIONS
Except in oversimplistic, or accidently favourable
situations, reverse engineering a database from source
DDL/Host language texts is a complex task that still needs
in-depth research. Understanding formal and empirical
design methodologies, together with their underlying
techniques and reasonings, is a considerable asset in this
process, mainly because it helps to identify the main design
processes that shape the final schema by including specific
requirements. A careful analysis of that shape can give
hints as to the conceptual/technical/organizational origin of
the observed data structures. The paper establishes a
general framework for understanding practical (i.e. mainly
intuitive and non formal) design methodologies and to
analyse the possible ways a conceptual schema could have
been transformed into the observed schema.

It must be clear that reverse engineering cannot be fully
automated process. Indeed, it must integrate not only
formal knowledge on database modeling and design,
technical knowledge on the implementation tools, but also
knowledge on how programmers program(med), how
designers design(ed), as individuals (through their personal
behaviour) and as members of an organization (following
possible methodological standards). In addition,

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 10

knowledge on the application domain, together with
information from other sources (obsolete and incomplete
documentation, data dictionary, file contents, etc) are
generally used to support the source text analysis.

The PHENIX project, from which some of the principles
presented hereabove have been borrowed, has developed a
specific method for standard (COBOL) file reverse
engineering. Processing of relational and CODASYL
structures is under investigation. The reader will find in
[J1] further details on the PHENIX project, and particularly
on the expert-system that has been developed.

11. CREDIT
Parts of the material on which this paper is based are results
of the PHENIX research project. PHENIX is a four-year
(1989-1993) industry-university research project developed
jointly by the FUNDP (University of Namur) and the
BIKIT (Babbage Institute for Knowledge and Infor-mation
Technology, University of Ghent), and is supported by a
consortium of 14 industrials (Barco, BBL, Bell, BIM, E2S,
Glaverbel, Groupe S, METSI, Provinces Réunies, Siemens-
Nixdorf, Solvay, Telinfo, Sidmar, Warmoes) and by
IRSIA/IWOLN, a Belgian Research support agency
(contract n° 5421). The objective of the project is to deve-
lop an expert-system approach to database reverse-
engineer-ing. The staff of the University of Namur
comprises M. Chandelon, prof. F. Bodart, prof. J-L
Hainaut, M. Joris, B. Mignon and C. Tonneau. The staff of
the BIKIT comprises E. Cardon, J. D'Hayer, F. Osaer, P.
Tisseghem, prof. Vandamme, prof. Vanwormhoudt, P.
Verscheure, R. Van Hoe.

12. REFERENCES

[B1] Batini, C., Lenzerini, M., Navathe, S., B, A
comparative Analysis of Methodologies for Database
Schema Integration, in ACM Computing Survey, Vol. 15,
No 4, pp. 323-364, December, 1986

[B2] Batini, C., Ceri, S., Navathe, S., B., Conceptual
Database Design, Benjamin/Cummings, 1992

[B3] Bouzheghoub, M., Comyn-Wattiau, I., View
Integration by Semantic Unification and Transformation of
Data Structures, in Proc. of 9th Entity-Relationship
Approach, 1990

[C1] Casanova, M., Amarel de Sa, J., Designing Entity
Relationship Schemas for Conventional Information
Systems, in Proc. of Entity-Relationship Approach, pp.
265-278, 1983

[C2] Casanova, M., A., Amaral De Sa, Mapping
uninterpreted Schemes into Entity-Relationship diagrams :
two applications to conceptual schema design, in IBM J.
Res. & Develop., Vol. 28, No 1, January, 1984

[C3] Chen, P., P., The Entity-Relationship Model -
Towards a Unified View of Data, in ACM TODS, Vol. 1,
No 1, pp. 9-36, , 1976

[D1] Davis, K., H., Adarsh, K., A., A Methodology for
Translating a Conventional File System into an Entity-
Relationship Model, in Proc. of Entity-Relationship
Approach, Octobre, 1985

[D2] Davis, K., H., Arora, A., K., Converting a Relational
Database model to an Entity Relationship Model, in Proc.
of Entity-Relationship Approach : a Bridge to the User,
1988

[E1] Elmasri, R., Navathe, S., Fundamentals of Database
Systems, Benjamin/Cummings, 1989

[F1] Fonkam, M., M., Gray, W., A., An approach to
Eliciting the Semantics of Relational Databases, in Proc.
of Entity-Relationship Approach - ER'92, pp. 463-480,
October, 1992

[H1] Hainaut, J-L., Entity-generating Schema
Transformation for Entity-Relationship Models, in Proc. of
Entity-Relationship Approach, 1991

[H2] Hainaut, J-L., Cadelli, M., Decuyper, B., Marchand,
O., Database CASE Tool Architecture : Principles for
Flexible Design Strategies, in Proc. of the 4th Int. Conf. on
Advanced Information System Engineering (CAiSE-92),
Manchester, May 1992, Springer-Verlag, LNCS, 1992

[H3] Software Reuse and Reverse Engineering in Practice,
Hall, P., A., V. (Ed.), Chapman&Hall, 1992

[I1] Special issue on Reverse Engineering, IEEE Software,
January, 1990

[J1] Joris, M., Van Hoe, R., Hainaut, J-L., Chandelon M.,
Tonneau C., Bodart F. et al., PHENIX : methods and tools
for database reverse engineering, in Proc. 5th Int. Conf. on
Software Engineering and Applications, Toulouse, 7-11
December, 1992

[N1] Navathe, S., B., Awong, A., Abstracting Relational
and Hierarchical Data with a Semantic Data Model, in
Proc. of Entity-Relationship Approach : a Bridge to the
User, 1988

[N2] Nilsson,E., G., The Translation of COBOL Data
Structure to an Entity-Relationship Type Conceptual
Schema, in Proc. of Entity-Relationship Approach,
October, 1985

[R1] Rock-Evans, R., Reverse Engineering : Markets,
Methods and Tools, OVUM report, 1990

[S1] Spaccapietra, S., Parent, C., View Integration : A Step
Forward in Solving Structural Conflicts, Res. Report ,
EPFL, Lausanne (CH), IEEE Trans. on Knowledge and
Data Engineering, October, 1992

[S2] Springsteel, F., N., Kou, C., Reverse Data
Engineering of E-R designed Relational schemas, in Proc.

Working Conference on Reverse Engineering - Baltimore, May 1993

IEEE Computer Society Press 11

of Databases, Parallel Architectures and their Applications,
March, 1990

[W1] Winans, J., Davis, K., H., Software Reverse
Engineering from a Currently Existing IMS Database to
an Entity-Relationship Model, in Proc. of Entity-
Relationship Approach : the Core of Conceptual
Modelling, pp. 345-360, October, 1990

