
AE4sTRAcT 

THEORETICAL AND PRACTICAL TOOLS FOR DATA BASE DESIGN 

J.L. HAINAUT 

INSTITUT D'INFOFMATIQUE - UNIVERSITE DE NAMUR 

rue GRANDGAGNAGE, 21 

The paper presents two families of reversible 
transformations for a binary information model. The 
binary model is considered as a special case of a 
generalized n-ary relational model as are CODD-S 
and E/R models. This parenthood increases the power 
of the binary model and makes the transformation 
valid for other models. Two applications of the 
transformations are presented within the framework 
of an Information System Design Approach, they are 
namely a conceptual model conversion and a valid 
TO!PAL schema production. 

1. INTRODUCTION 

Data base design, and more generally Informa- 
tion System design, is known to be a complex pro- 
cess. A design method is usually decomposed into 
successive design steps, which are made more or 
less explicit, starting with the gathering of 
user-8 requirements and ending up with programs and 
operational files or data bases. Such a method re- 
lie8 on an information model which in some cases 
may be very elementary, and even implicit. 

The Information System Design Approach under 
development in the Institut d'Informatique of Namur 
proposes a four steps design process which may be 
assisted by a sophisticated data dictionary system 
supported by an extended ISDOS System [4]. 

These steps are derived from the multilevel 
design process proposed in the introductory report 
in [ZO]j they are namely I 

(1) analysis of the real world and gathering 
of user-8 requirements8 (2) design of the informa- 
tion conceptual schema and design of the applica- 
tions, viz. the functional specification and the 
dynamics of the proceduresi (3) design of a system 
architecture into modules and design of the algo- 
rithms and of the data access structures neededr 
(4) mapping of this output into the operational 
computer environment : hardware, OS, programming 
language, DBMS, . . . 

As far as the data base is concerned, the 
three formalized data descriptions are the concep 
tual schema from step 2, the basic logical access 

- B-5000 NAMUR - BELGIUM 

schema from step 3 and the DBMS/DMS schema from 
step 4. 

The conceptual schema is a description of the 
data and of their semantic properties! whether 
the applications will be computerized or not is 
irrelevant at this stage. The schema must be 
agreed upon by both the system developers and 
the users, who are sometimes managers and there- 
fore not computer-minded at all. Such a schema 
relies on a rigorous, generally mathematical, 
model such as n-ary, binary or E/R models. 

The basic logical access schema is a first pro- 
posal for a file or db structure which is as 
simple as possible (for example, which is graph- 
ically close to the conceptual schema)i it em- 
phasizes the access structure strictly needed 
for the algorithms of the applications. Neither 
criteria of performance nor DBMS restrictions 
have been taken into account so far. This kind 
of schema requires an expression formalism 
adapted to access concepts t the Logical Access 
Model. Despite its low level of sophistication, 
a lot of interesting data can be deduced from 
this achemar these are mainly logical access 
counts and data transfer volumes for each algo- 
rithm. 

The next schema is written in the DDL of an ac- 
tual DSM.5, and includes results from performance 
oriented decisions. This schema is generally 
twofoldi the general access schema used by the 
application progr-ers (sometimes via subsche- 
mas) and the physical schema which specifies the 
physical parameters of the data base. 

These three levels can be recognized in most 
current data base design methods although the con- 
cepts and formalisms are not always the same; in 
SOM methods, the conceptual and logical access 
levels are not clearly separated. For example a 
similar approach can be found in [16]. 

One of the most difficult design steps is the 
production of the DBMS schema from the basic logi- 
cal access schema. Much work has been devoted to 
this step, more or less comprehensive analytic and 
simulation tools are proposed in 1151, 1163 and 

CH1701-2/81/0000/0216$00.75 @1981IEEE 
216 .7 



[19] to mention only mums of them. 

This paper is not concerned with such a design 
tool; rather, it presents a very restricted, but 
powerful set of theoretical technique which may be 
useful for a large range of schema transformation 
methods, either at the conceptual, logical access 
or DMS levels. The tools presented here mainly 
consist of two families of reversible mappings on 
binary structures. The reversibility ensures 
loss-free, noise-free transformation not only of 
the information structure, but of the integrity 
constraints and of the semantics as well, although 
they are not dealt with in this paper. . 

The paper is organized as follows t a general- 
ized relational model (section 2) is very briefly 
outlined, from which a binary model will be derived 
(section 3). leading to the presentation of the 
transformations (section 4). Generally intended for 
the conceptual level, the binary model will be ex- 
tended to access concepts for defining the logical 
access model (section 5). Two applications of the 
transformations are then presented; (section 6) the 
translation of a binary (or E/R) schema into CODDS 
model and conversely and (section 7) the transla- 
tion of a conceptual schema into a particular DBWS 
model. 

2. AGBNBRALIBBDI(ELATIONALWODBL 

Let us consider a n-ary relational model in 
which relations are defined not only on simple 
domains but on entity-domains as well. A value of 
an entity-domain denotes the existence of an ob- 
ject, individual or concept of the real world and 
constitutes a designation means for this object. 
Although such a value is often called "surrogate" 
we will use the term data base entity, or more con- 
cisely entity. We will not discuss the notion of 
entity in more detail; such a discussion can be 
found in Ball [14], Pirotte [17], Codd [lo], Benci 
and al [3] and Iiainaut [ll]. 

With a slight adaptation, relational algebra 
and functional dependency concepts and properties 
are still valid for this extended model. An in- 
teresting use of this model consists in restricting 
the possible constructs with a set of constraints. 
Such sets can generate CODDOS model [S], E/R models 
[7], and binary models [1],[5],[ll];theae models 
therefore inherit most of the powerful concepts and 
tools of the generalized model. 

The reader is supposed to have some knowledge about 
the fundamentals of relational models. Throughout 
this paper, we shall make use of the following con- 
cepts and notation; 
- R(A,B,C) L relation (schema) defined on domains 

AIBIC 
R 

- A,B--C : C is functionally dependent on A,B in 
R (R is any relational expression) 

- R(A,B,C) : A,B is a key (or identifier) of R 
- RI&B1 : projection of R on A,B 
- R[a,B] where a A I projection of R where A-a on 

domainB 

R*S : natural join on the common domains 
. 
*Ri = Rl*R2*RB ( (Rl*R2)*R3 
3 
ROS : composition on the common domains (= pro- 
jection of the join on the non co-n domains) 
RoSoT =( RoS )oT 

3. A BINARY RELATIONAL MODEL 

Binary models enjoy remarkable properties such 
as the atomiciy of their concepts and graphical 
representation capabilities. However they are ham- 
pered by serious drawbacks) the main of them is 
that they are unable to express easily some usual 
constraints such as multi-domain keys (from now on, 
the term key will be replaced by identifier, the 
former assuming too many meanings I relational key, 
sort key, access key, search key, selection key, 
privacy key, . ..). 

The current binary model is generated from the 
generalized model by the following rules t 

(1) binary relations only (2) each connected 
component of the graph so defined contains at 
least one entity domain (there is always a path 
from each simple domain to at least one entity 
domain). This rule is not necessary from the 
theoretical point of view) it is only intended 
to define schemas which are processsble in the 
lower levels (access and DBWS levels). 

In the graphical representation of a schema, a 
simple domain will be represented by (the string 
of) its name, an entity domain by its name enclosed 
in a box, and a relation by a labelled arc between 
the representations of its domains8 the empty 
string is a valid label (relation without name). 

works-in 

El NAME ADDRESS D# NAME 

The representation of a simple domain partici- 
pating in more than one relation may (but need not) 
appear several times, this is tolerated to make the 
drawing clearer. Such is the case of NAMB in the 
example above. 

The triplet <relation name, first domain name, 
second domain name> identifies a relation in a 
schema. Its name (label) will generally be suffi- 
cient to designate a relationi however, in case of 
ambiguity, or if the relation has no name, a more 
explicit designation will be needed 

To capture more semantics the model will be provid- 
ed with three kinds of properties or integrity con- 
straints) connectivity, existence constraints, and 
multi-domain identifiers. 

Connectivity of a relation 
Connectivity is an expression of the function- 

nal dependencies that hold in the relation. In the 
following table, A and B are simple or entity 

217 



domains. 

relation connectivity graphic. 

R(A,B) many to many (N-N) A-se-B 

R( APB) from A to B: one to many (1-N) A-B 
from B to A: many to one (N-l) 

W&B) one to one (l-l) A-B -- 

It is worth noticing that l-l is a particular case 
of 1-N and U-I, and that 1-N and N-l are particular 
cases of N-NJ hence, for example, any property of 
N-N relations is also a property of l-N, N-l and 
l-l relations. 

Existence constraint of an entity domain 
This constraint consists in forcing, at any 

time, every entity of a domain to participate in a 
tuple of a given relation. For instance if an em- 
ployee always works in a department, the previous 
exemple can be completed by the existence con- 
straint : 

works-in [EMPLOYEE] = BMPLOYEE 

or, graphically : 
works-in 

h Y -------{DEPARTMENT 

Multi-domain identifier 
The connectivity of a relation is an expres- 

sion of the ability of a domain to identify the 
other one; in the last example, an EMPLOYEE entity 
identifies one DEPARTMEWI entity via works-in. The 
multi-domain identifiers of n-ary models, however, 
seem to give rise to a problem. 

The n-ary origin of the binary model allows US 
to use some of the powerful tools of the n-ary 
models and so to retrieve some power of the lost 
paradise. Let-s assume the n-ary schema : 

LINE-OP-ORDER(ORDBR, PART, PTy) 

which can be binarised into (see section 6): 

ORDER PART 

OL PL 

y 

L-OF-O such that: 

w LINE-OF-ORDER - oL*PL*LQ 
[ORDER,PART,QTY] 

The identifier of LINE-OF-ORDER can be expressed in 
the binary schema by : 

OL * PL 
ORDBR,PART * L-OF-O 

or, graphically, by : 

4. 'IWO FAMILIES OF BINARY TRANSFORMATIONS 

Now we are going to define two sets of map- 
pings that will allow us to transform a binary 
schema into an other one in such a way that the 
former can be deduced back from the latter without 
information loss or noise (reversibility). These 
mappings are simple and intuitive. They allow the 
transformation of the information structure 
(domains and relations) and of various integrity 
constraint8 and of the semantics (meaning) as well; 
the discussion will deal with information structure 
only. Despite their simplicity, these mappings are 
sufficient to generate a large range of the most 
useful transformations [12]. 

The mappings could have been defined in the 
generalized model. Yet their expression would have 
been more complex and far from intuitive, essen- 
tially due to the absence of graphical representa- 
tion 8 moreover, it can be proved that they are 
also valid for other models (CODD-, E/R). 

The mappings will be presented (without proof) 
under the form of implication symbols between two 
schemas$ the symbols are topped by the expression 
of the mapping. A concise notation will also be 
provided to designate the objects concerned by the 
mappings. 
In the following, the names A, Ai, B, C designate 
either simple or entity domains. 

Introducing/removing an entity-domain 

Under what circumstances can a new entity- 
domain be introduced, and an existing one be re- 
moved ? Most problems can be solved on the basis of 
the following mappings. 

- +(a.b)eR. I 
create r in RAB 
insert (a,r) in AR 
insert (b,r) in BR 

R=ARoBR 
< 

In concise notation :Mll r R===+RAB, AR,BR 
nI2 : RAB, AR, BR-R 

This transformation is mainly intended for true N-N 
relations; for the other connectivities the &I2 map- 
pings include MI. 

218 



create r in RAB 
insert (a,r) in AR 

insert (b,r) in BR 

R=ARoBR 
RAB particip 
in AR,BR on1 

In concise notation :Ml r R=+RAB, AR,BR 
la? :RAS,AR,BRmR 

Rappings Xl1 and Ml are useful to transform con- 
structs that are not accepted by a particular model 
or DSMS. Such will be the case for N-N relations, 
repeating and optional attributes and recursive re- 
lations in many DBMS. Rappings Ml2 and M22 xake it 
possible to clean and simplify a schema. 

a)Removing a recursive relation (a non-syxetrical 
recursive relation is oriented for designational purpose ). 

M21: son+FATBRR,is,of 

b) Eliminating a repeating, optional attribute. 

N21 

co* ACCODNTQ 

c) Index generation (at the access level). 

SuPPLIER# 

Rotating a relation 

These mappings transform a schema by "rotat- 
ing" a relation from a domain to one or several 
other ones. The idea is quite simple; if A is to be 
connected to B, it can be connected to any identif- 
ier of B and conversely. This trivial idea gives 
rise to one of the most powerful mapping family. 
Its general form is as follows I 

S[B] 6 Ri[B] 
i=l..n 

tn concise nota .on : 
I431 : s, Rl, R2, . . . Rn 4T1, T2, . . . Tn 
M32 : Tl, T2, . . . Tn, Rl, R2, . . . Rn e.S 

For n = 2, the mapping is a bit simpler : 

Ti=Ri o S 
i=l..n 

> 

s= 
n 
/I( TioRi) 

.Ti[C]=Tj[C] i,j=l..n 
n 

.( *Ti)[Al,A2,. . ,An] 
1 

n 
c (*Ri)[Al,A2,. * ,An] 

k.l A2 RlR2 

i’- 
B 

S 

C 

SIBI l MB1 Tl[C] = TZ[C] 
StBl c =[Bl TloT2 6 RloT2 

Tl=RloS 
TZ=RZoS 

In concise notation I X41 I S. Rl. R2-;e)Tl, T2 
I442 t Tl, T2, Rl, R2==+S 

For n - 1, R (i.e. Rl) must be l-l. However the 
mappings are still valid if S is a N-N relation, 
which is unfortunately false for X3 and U4. 

A 
R 

B 

,” S 

C 

T=RoS 
> 

S=ToR 

1 SIBI c R[Bl VA1 = WA1 1 

In concise notation I MS1 : s, R-T (symetrical) 

Note. Existence constraints on objects in the 
source schema generally lead to simpler properties 
in the mappings. For example, if B is imposed ex- 
istence constraints in Ri i=l..n, the constraints 
S[B] e Ri[B] need not be mentioned. 

219 



Eh!!eQkt_azY c?swPME * 

a) Removing inter-entity relations. 

co oRDER oc=ccocol pzqiKl r?zEpl 

cc 

\f 

oc 

CX 

oc[CW] 6 CC[C#] 

b) Breaking a hierarchy. 

TE-EToE 
ST-EToSE 

TEoST c EoSE 

5. A LOGICAL ACCESS MODEL AND ITS BINARY EXPRESSION. 

Although the DBTG/DDLC schema proposals are a 
fairly comprehensive set of concepts, a more gen- 
eral and simple model has been preferred t the Log- 
ical Access Model [13]. The data structures of this 
model are quite familiar to application program- 
mers; the data are described in terms of data base, 
files, records, item values, identifier of a 
record-type, access-keys and (inter-record) 
access-paths, etc. (similar concepts can be found 
in [61) 

The basic objects to be accessed are the 
records and the item values. The access mechanisms 
are from record to item values, from item values to 
records (access-key) and from record to records 
(access-path). Given a special, single occurrence, 
record typs called SYSTEM, access-path types from 
it easily model any kind of sequential access. It 
should be noted that an access-path is basically 
directed1 if a record a is the origin of an 
access-path to target records bl, b2, b3, the pro- 
grmr can sequentially access bl, b2, b3 from a, 
but cannot access a from, say, b2 via this access- 
path. 

Such structures, however, can be easily for- 
malized by an extended binary model. Its domains 
are Items (instead of simple domains) and Record- 
Types (instead of entity domains). Relations on 
these domains clearly express the access mechanisms 
mentioned above. Thanks to this formalization, the 
logical access level can take advantage of the 
graphical binary representation, the relational ex- 
pression of integrity constraints and especially 
the mappings defined above. 

The main differences between the pure binary 
model and the binary logical access model are the 
following I 

(1) an access relation is directed from the origin 
domain to the target domain3 in the graphical 
representation, the arcs will also be directed. 
(2) the targets of an access relation are ordered. 
(3) an access relation can be the inverse of anoth- 
er onei this corresponds to the existence of an in- 
verse access. For example, a CODASYL set type is 
described by (a) a 1-N access-path type and (b) its 
N-l inverse, since the FIND OWNER primitive is al- 
ways available. In the graphical representation, 
two inverse access relations are signaled by a spe- 
cial symbol, or, more concisely, by a unique bi- 
directed arc 1 in the latter case, both relations 
are given the sams name. 

An example of access structure t 
AP-WRKS 

Rx-EWIOYEE REC-DEPm 

This schema contains the description of : (1) items 
associated to record-type REC-EUPLOYEE, two of them 
being access-keys, (2) items associated to record- 
type RFC-DEPART, one of them being an access-key, 
(J)access-path type Ap-WOFXS from l?EC-ENPUXBE to 
REC-DEPART and its inverse RP-PIORICS from REC-DEPART 
to PJx-EMPuxEE) 

When applying the binary mappings $0 an access re- 
lation which is given an inverse relation, it 
should be emphasised that each of them can be 
transformed independently of the other. However 
the source relations can be transformed as a whole 
by associating an inverse relation to each target 
relation. For example, the Ml mappings can be 
adapted as follows: 

6. FIRST APPLICATION I CODDification of a binary 
schema. 

The problem to be solved is that of the trans- 
lation of a schema from the binary model into the 
CODD-S model. We first need a preliminary mapping, 
given without proof: 

any normalized relation R, defined on simple 
domains, can be represented by (1) an entity 
domain ER in bijective correspondence with R, 
(2) binary relations between RR and each simple 
domains. Connectivity and multi-domain identif- 
iers are derived from the identifiers of R. 

conversely, a normalized COW- schema can be 
generated directly from a binary schema whereI 
(1) each relation is defined on an entity domain 
and a simple domain, (2) each entity domain par- 
ticipates in at least one relation, (3) entity 
domains are submitted to existence constraints 
in each relation in which it participates ("the 
attributes are mandatory*‘) , (4) no N-N or 1-N 
relations from entity domains. R is the join of 

220 



the binary relations. 

Example3 

+===+ - R(&, B, C. D) 

A D 

Let us solve the problem for the following binary 
schema : 

Let us eliminate the inter-entity domain relations : 
x!51 * co, cc ===+cCO ( removes CO ) 
Ml I OL,OO=+OOL (removes OL) 
MS1 I PL, PP -PPL ( removes PL) 
and the optional and repeating attribute CHR-N I 

n11 I cCFi~IDxCBRN,cCB1,cCB2 

PART 77 PP 

Pi PRICE 

CCO[C#] c CC[C#] 
OOL[OXJ C OO[O#] 
n?L[P#J c PP[P#] 

The rotation of CCBl from CDSTONBR to C# by 
11511 CCB1,cc~CCB3 leads us tor 

c;q=yJ& c;~; CCB3[C#] c CC[C1I] 

C1I 

and gives a schema ready for the final production : 

cusTonER(~, CNAnE) 
IDX-CRRB(C#, CBR-NAXB) IDX-CBPN[CX] c CDSTOXER[CX] 
ORDER(o#, ct, DATE) OPDER[o)] 6 cusTonER[cw] 
LINE(oI. P#, QTY) LINB[O#] c ORDER[OI] 
PART(P& PRICE] LIBB[P#] c PART[P#] 

Comarents 
1. The process is systematic and therefore 

easily performed by an algorithm. Since it is re- 
versible, a similar algorithm can be designed to 
generate a true binary schema from a CODD-S schema. 

2. Translating an E/R schema into a CODD'S 
schema is an easy task as well; the reverse trans- 
lation, however, is more difficult since in some 

cases, distinguishing entities from relationships 
has to be performed at the semantic level. 

3. A binary (or E/R) schema can be translated 
if every entity-domain (or Entity-type) can be 
identified, directly or not, by one or several sim- 
ple domains. Translation rules for the three models 
can be found in 1123. 

4. Such problems have also been studied in 
t21. 

7. SECOND APPLICATION : PRCXAIKGICALACCBSS SCBE- 
WTOADBXSSCBBHA 

The following example is only intended to 
demonstrate the use of the mappings in a complex 
design process. The main objective will be the 
translation of a general access schema into data 
structures valid for a given DBMS. The TOTAL system 
has been chosen in this example because its res- 
tricted data structures (compared with CODASyL) 
raise interesting problems. 

Let us suppose that the result of the first algo- 
rithm design (3rd step of the Namur Approach) has 
led to the following access schema. 

DATA4 AN 

A record PERSON describes a person and a 
record BANX describes a banking company) each of 
them is identified by a number, PN for PBRSON and 
BN for BABX. A person who has at least one account 
in a given bank is known to be a customer of this 
company and this status is described by a record 
CDST to which the records ACCOUNT describing the 
accounts of the person are linked. An account is 
identified in a bank by an account number (AN); 
this can be declared by: WAN and BCoCA (or BBNoB- 
COCA) are an identifier of ACCOONT”. On the other 
hand, given a bank identifier BB and a value of AR, 
it would be possible to access the unique 
corresponding record. 

The DATA of each record type will be ignored except 
for the final achemar for reasons of simplicity, 
the inverse N-l access-path types will be given 
specific names8 PC, BC and a. 

It will be useful to briefly specify the TOTAL 
data structure restrictions in terms of the logical 
access model concepts. TOTAL knows two classes of 

221 



record typerr; the RASTER record type, to which an 
item, which is an access-key and an identifier, 
must be associated, and the VARIABLE-ENTRY record- 
type that has no such item. One-to-many access-path 
types without explicit inverse can be declared from 
a master record type to a Variable-entry record 
type : the inverse access is automatically made 
available by associating the access-key of the ori- 
gin with the target record-type. 

Solving the problem consists in transforming 
the structures of the source schema which cannot be 
directly translated in the TOTAL data structures. 

1. TOTAL doesn-t tolerate explicit N-l access-path 
types * This constraint will be satisfied by apply- 
ing l&l mapping to the N-l access-path types PC*, 
SC. The problem of CA* is more complex; let us try 
the H41 mapping first. 

n51 I PC-, PPN-CPN (removes PC-) 
M51 : BC', BEN -N (removes EC ) 
I441 : CA-, PC, EC -PA, BA (removes CA-) 

P N 

P N 

Yi ACCOUNT 
PC- = CPN o PPN 
BC' = CBN o BEJN 
CA. = (PAoPC) 

fk BAOEC ) 

Remark. 
AN 

Not only does the transformation ensure semantic 
equivalence, as in a conceptual schema but it also 
ensures access equivalence since PN and BN are 
access-keys. 

The problem of PA and BA which are explicit N-l 
access-path types can be solved easily by applying 

I451 : PA, PPN -APN 
I451 : BA, BEN-ABN 

A cleaned and completed schema 
posed. 

(removes PA) 
(removes BA) 

can then be pro- 

PN 

PN EN 
PA - APN o PPN 
BA=ABNoBBN 

Since (AAN,BBNoBCOCA) is an identifier of account, 
and ABN= BBNoBA=BBNoBCoCA-, (MN,ABN) is also an 
identifier of ACCOUNT. Moreover, the access to AC- 
COUNT from AN and BN can now be stated explicitly 
by an access key. 

2. TOTAL doesn-t tolerate the Target of an access- 
path type (CUST in this case) being itself the ori- 
gin of an access-path type. Inserting new record 
types into PC and EC allows NST to be put at the 
top level: 

M21 : PC -=+PERCUST, PCC, PPC 
I421 : BC -+BANCUST, BCC, BBC 

PC = PPC 0 PCC 
BC = BBC o BCC 

Being now a master record-type, COST must be asso- 
ciated with an identifier/access-key! (PN, BN) has 
of course been chosen. 

3. For the same reason as in 1. (explicit N-l 
access-path type) , PCC and BCC must be 
transformed, 8. g. by rotation8 

I441 I PCC, CPN, CBN===+PCPN, PCBN 
M41 : BCC, CPN, CEiN +BCPN, BCCN 

PN BN AN BN 

222 



ensure valid data base state with respect to the 
integrity constraints. 

PCC - (PCPNoCPN)fl(PCBNoCBN) 
BCC = (BCPNoCPN)fl(BCBNoCBN) 

4. The target of an access-path type is a 
Variable-entity record-type and hence cannot be as- 
sociated with an access-key. Due to its access-key, 
ACCOUNT must then be made a Master record-type. As 
in 2, a W21 record-type insertion is a solution: 

M21 t CA-ACCUST, ACA, CAC 

CA = CAC o ACA 

N-l access-path type ACA will be transformed by : 

I441 : ACA, AAN, ABN -ACAN, ACEN 
so that ACA - (ACAN o AAN)n(ACBN o ABN) 

Iience the final schema : 

AN BN PN 

PN BN 

The translation rules between the source schema and 
the final schema are the following: 

- PEPSDN,BAIW,CUST,ACCOU~JT,PPN,BBN,AAN : no change 
- access key to ACCOUNT : (AN via AAN, BN via ABN) 
- PC = PPC o ((PCPNoCPN) fl (PCBNoCBN)) 

PC-= CPN o PPN 
BC - BBC o ((BCPNoCPN) n(SCSNoCBN)) 
B.C-= CBN o BBN 
CA = CAC o ((ACANoAAn) /I (ACBNOABN)) 
CA-= (CPNoPPNoPC) fi (CBNoBBNoBC) 

some integrity constraints are not made explicit in 
the schema above) they are derived from the succes- 
sive mappings and can be most simply expressed by 
"PC- is inverse of PC", "BC* is inverse of BC" and 
*TX is inverse of CA". 

CZ 

This schema can be immediately translated into a 
TOTAL DBDL text and in programming rules that will 

Furthermore, the algorithms of the application pro- 
w- can be expressed as working on the first ac- 
cess schema which is both simpler and clearer than 
the final one. The actual programs can be obtained 
essentially by two methods. The first one consist 
in hand-translating each statement making use of a 
transformed substructure (PC,PC-,...) according to 
the translation rules given above1 each of these 
algebraic rules corresponds to a very simple algo- 
rithmic expression. The second method is more com- 
plex but provides the application programs with a 
high level of logical data independence. It con- 
sists in translating each access statement into a 
call to an access module dedicated to this data- 
base and that carries out the mapping dynamically. 
Using access modules is co-n practice in file and 
d.b. progrsmmingi the above process, however, gives 
acurate and strict rules for the design of such 
modules. 

Although this schema has probably good performance, 
our only goal was to obtain a TOTAL schema regard- 
less of any performance criteria. Other TOTAL 
schemas can be derived by transforming the invalid 
substructures in another ordering; on the other 
hand a TOTAL schema can be transformed into another 
TOTAL schema, for instance by splitting or merging 
record-types or by migrating items. Such a process 
can be considered as a "valid TOTAL schemas genera- 
t ion" ; it can be easily automated (this concept is 
also described in [15]). 
It is worth noticing that the final schemas are 
complete in that they contains the data structure 
description, the translation of the initial in- 
tegrity constraints and the derived integrity con- 
straints as well. 

8. CONCLUSION 

The paper is mainly concerned with the propo- 
sal of a set of reversible transformations that are 
both powerful and intuitive. They have been defined 
for a binary model. This model, however, is con- 
sidered as a particular case of a generalized rela- 
tional model. Consequently, the transformations are 
also valid for other models such as CODD'S and E/R 
models, considered as other particular cases of the 
generalized model. Two applications of the 
transformations have been developed within the 
framework of the Information System Design Approach 
of Namur. The first application is concerned with 
the translation of a conceptual schema from a model 
into another and the second application is con- 
cerned with the adaptation of a logical access 
schema to a given DBMS. An interesting feature of 
the transformation is its ability to automatically 
deduce integrity contraints that are frequently 
forgotten in manual deeign procedures. The general- 
ity of the model and of the transformations makes 
them well suited to the expression of such classi- 
cal practices as record-type splitting, record-type 
merging, conversion of flat files from network 
structure and conversely, item migration, removing 

223 



of U-N or recursive relationship, etc ,., 1990. 
Besides its educational advantages [lz], the [ZO] "Data Structure Models for Information Sys- 

transformation can be starting point of general or terns", “Proc . Intern. Workshop of Namur, 
DBMS oriented functions of a CAD system for Data 1974, Presses Universitaires de Namur (1975). 
Bases development. 

9. REFERENCES 

[l] ABRIAL J.R., "Data Semantics", in Data Base 
Eanagement, North-Holland, 1974. 

[2] ADIBA, DELDBBL, LEONARD, "An unified approach 
for modelling data in logical data base 
design" in Rodelling in data base management 
systems, North-Holland, 1976. 

[3] BERCI, BODART, BUGAERT, CABARES, 'Concepts for 
the design of a conceptual schema", in Model- 
ling in data base management systems, North- 
Holland, 1976. 

143 BODART, PIGNEUR, "A model and a Language for 
functional specifications and Evaluation of 
Information System Dynemica" in Formal Models 
and Practical tools for Information Systems 
Design, North-Holland, 1979. 

[5] BRACCBI, PAOLINI, PELAGATTI, "Binary Logical 
Associations in Data0 Rodelling** in Modelling 
in data base management systems, North- 
Eolland, 1976. 

163 CABANFS A., %apport Independance dans les 
SOBD", Institut 6' Informatique d'Entreprise. 
CNAN, Paris (Nars 1977 ) , 

[7] CBEN P.P., "The Entity-Relationship Model : to- 
ward a unified view of Data, ACU !fODS l,l, 
1976. 

[a] CDDASTL DDLC report. Information Systems 3, 4, 
1979. 

[9] CODD E.P., "A Relational Model of data for 
large, shared Data Banks", CACM, 13, 6, 1970. 

[lo] CODD E.F., "Extending the data base relational 
model to capture more meaning", IBM RJ2472, 
1979. 

[ll]RAINAUT, LECIiARLIBR, **An extensible semantic 
node1 of data bases", Proc. IFIP Congress 
1974, North-Eolland. 

1123 RAIEAUT, Wodeles conceptuela", Lecture notes, 
Public. Institut d*Informatigue, Namur, 1950 
(french). 

[133 EAINAUT, VJn modele de description de fichiers 
t le modela d-acceW*, Lecture notes, Public. 
Institut d'Infomatigue, Namur, 1960 (french). 

[14] BALL, OWIETT, TODD, "Relations and Entities", 
in Uodelling in Data Base Management Systems, 
North-liolland, 1976. 

1153 IFUiNI, PURKAYA5TRA, TEOREY, “A designer for 
DBM-processable logical database structures", 
Proceedings VLDB, 1979. 

[16] XITOMA, IPANI, **Automatic Data Bases Schema 
Design" Proc VLDB 1975, ACN (1975). 1173 
PIPDPTE, VWplicit description of entities and 
their manipulation in languages for the rela- 
tional data base model", These de doctorat - 
Universite libre de Bruxelles, 1976. 

[16] TAFDIEU, NANCI, PASCOT, "Conception d-un 
systeme d*infonaation", Les Editions 
d-Organisation/GaOtan Morin, 1979. 

[19] TEOREY, PRY, *The logical access approach to 
database design", Computing Surveys, 12, 2, 

224 


