THEORETICAL AND PRACTICAL TOOLS FOR DATA BASE DESIGN

J.L.

HAINAUT

INSTITUT D'INFORMATIQUE - UNIVERSITE DE NAMUR

rue GRANDGAGNAGE, 21

ABSTRACT

The paper presents two families of reversible
transformations for a binary information model. The
binary model is considered as a special case of a
generalized n—ary relational model as are CODD" S
and E/R models. This parenthood increases the power
of the binary model and makes the transformation
valid for other models. Two applications of the
transformations are presented within the framework
of an Information System Design Apprxoach; they are
namely a conceptual model conversion and a valid
TOTAL schema production,

1. INTRODUCTION

Data base design, and more generally Informa-
tion System design, is known to be a complex pro-
cess. A design method is usually decomposed into
successive design steps, which are made more or
less explicit, starting with the gathering of
user's requirements and ending up with programs and
operational files or data bases. Such a method re-
lies on an information model which in some cases
may be very elementary, and even implicit.

The Information System Design Approach under
development in the Institut d - Informatique of Namur
proposes a four steps design procegs which may be
assisted by a sophisticated data dictionary system
supported by an extended ISDOS System [4].

These steps are derived from the multilevel
design process proposed in the introductory report
in [20]; they are namely :

(1) analysis of the real world and gathering
of wuser s requirements; (2) design of the informa-
tion conceptual schema and design of the applica-
tions, wviz. the functional specification and the
dynamics of the procedures; (3) design of a system
architecture into modules and design of the algo—
rithms and of the data access structures needed;
(4) wmapping of this output into the operational
computer environment : hardware, O0S, programming
language, DBMS, ...

As far as the data base is concerned, the

three formalized data descriptions are the concep—
tual schema from step 2, the basic logical access

CH1701-2/81/0000/0216$00.75 © 1981 IEEE

216

B-5000 NAMUR ™ BELGIUM

schema from step 3
step 4.

and the DBMS/DMS schema from

The conceptual schema is a description of the
data and of their semantic properties; whether
the applications will be computerized or not is
irrelevant at this stage. The schema must be
agreed upon by both the system developers and
the users, who are sometimes managers and there-
fore not computer-minded at all. Such a schema
relies on a rigorous, generally mathematical,
model such as n—ary, binary or E/R models,

The basic logical access schema is a first pro-
posal for a file or db structure which is as
simple as possible (for example, which is graph-
ically close to the conceptual schema); it em-—
phasizes the access structure strictly needed
for the algorithms of the applications. Neither
criteria of performance nor DBMS restrictions
have been taken into account so far. This kind
of schema requires an expression formalism
adapted to access concepts : the Logical Access
Model. Despite its low level of sophistication,
a lot of interesting data can be deduced from
this schema; these are mainly logical access
counts and data transfer volumes for each algo-
rithm.

The next schema is written in the DDL of an ac-
tual DBMS, and includes results from performance
oriented decisions. This schema is generally
twofold; the general access schema used by the
application programmers (sometimes via subsche-
mas) and the physical schema which specifies the
physical parameters of the data base.

These three levels can be recognized in most
current data base design methods although the con-—
cepts and formalisms are not always the same; in
some methods, the conceptual and logical access
levels are not clearly separated. For example a
similar approach can be found in [18].

One of the most difficult design steps is the
production of the DBMS schema from the basic logi-
cal access schema. Much work has been devoted to
this step; more or less comprehensive analytic and
simulation tools are proposed in ([15], [16] and

[19] to mention only somes of them,

This paper is not concerned with such a design
tool; rather, it presents a very restricted, but
powerful set of theoretical technique which may be
useful for a large range of schema transformation
methods, either at the conceptual, logical access
or DBMS levels. The tools presented here mainly
consist of two families of reversible mappings on
binary structures. The reversibility ensures
loss—free, noise-free transformation not only of
the information structure, but of the integrity
constraints and of the semantics as well, although
they are not dealt with in this paper.

The paper is organized as follows : a general-
ized relational model (section 2) is very briefly
outlined, from which a binary model will be derived
(section 3), leading to the presentation of the
transformations (section 4). Generally intended for
the conceptual level, the binary model will be ex-
tended to access concepts for defining the logical
access model (section 5). Two applications of the
transformations are then presented; (section 6) the
translation of a binary (or E/R) schema into CODD"S
model and conversely and (section 7) the transla-
tion of a conceptual schema into a particular DBMS
model,

2. A GENERALIZED RELATIONAL MODEL

Let us consider a n-ary relational model in
which relations are defined not only on simple
domains but on entity-domaing as well. A value of
an entity-domain denotes the existence of an ob—~
ject, individual or concept of the real world and
constitutes a designation means for this object.
Although such a value is often called "surrogate"
we will use the term data base entity, or more con-
cisely entity. We will not discuss the notion of
entity in more detail; such a discussion can be
found in Hall [14], Pirotte [17], Codd [10], Benci
and al [3] and Bainaut [11].

With a slight adaptation, relational algebra
and functional dependency concepts and properties
are still valid for this extended model. An in-
teresting use of this model consists in restricting
the possible constructs with a set of constraints.
Such sets can generate CODD S model [9], E/R models
{7], and binary models ([1],[{5],[11];these models
therefore inherit most of the powerful concepts and
tools of the generalized model.

The reader is supposed to have some knowledge about

the fundamentals of relational models. Throughout

this paper, we shall make use of the following con—

cepts and notation;

- R(A,B,C) : relation (schema) defined on domains
A,B,C

R

- A,B~»C : C is functionally dependent on A,B in
R (R is any relational expression)

- R(A,B,C) : A,B is a key (ox identifier) of R

- R[A,B] : projection of R on A,B

- R[a,B] where a A : projection of R where A=a on
domain B

217

-~ R*S : natural join on the common domains
1
~ *Ri = RI*R2*R3 : (RL*R2)*R3
3
~ RoS : composition on the common domains (= pro-

jection of the join on the non common domains)
~ RoSOT =(RoS)oT

3. A BINARY RELATIONAL MODEL

Binary models enjoy remarkable properties such
ags the atomiciy of their concepts and graphical
representation capabilities. However they are ham—
pexed by serious drawbacks; the main of them is
that they are unable to express easily some usual
constraints such as multi-domain keys (from now on,
the term key will be replaced by identifier, the
former assuming too many meanings : relational key,
sort key, access key, search key, selection key,
privacy key, ...).

The current binary model is generated from the
generalized model by the following rules :

(1) binary relations only (2) each connected
component of +the graph so defined contains at
least one entity domain (there is always a path
from each simple domain to at least one entity
domain). This rule is not necessary from the
theoretical point of view; it is only intended
to define schemas which are processable in the
lower levels (access and DBMS levels).

In the graphical representation of a schema, a
simple domain will be represented by (the string
of) its name, an entity domain by its name enclosed
in a box, and a relation by a labelled arc between
the representations of its domains; the empty
string is a valid 1label (relation without name).

works—in

EMPLOYEE DEPARTMENT

E# NAME ADDRESS D¥ NAME
The representation of a simple domain partici-
pating in more than one relation may (but need not)
appear several times; this is tolerated to make the
drawing clearexr. Such is the case of NAME in the

example above,

The triplet <«relation name, first domain name,
second domain name> identifies a relation in a
schema. Its name (label) will generally be suffi-
cient to designate a relation; however, in case of
ambiguity, or if the relation has no name, a morxe
explicit designation will be needed

To capture more semantics the model will be provid-
ed with three kinds of properties or integrity con-
straints; connectivity, existence constraints, and
multi~domain identifiers.

Connectivity of a relation

Connectivity is an expression of the function—
nal dependencies that hold in the relation. In the
following table, A and B are simple or entity

domains.

relation connectivity graphic,

R(A,B) many to many (N~N) A—§4—B

R(A,B) from A to B: one to many (1-N) A—4g—B
from B to A: many to one (N-1)

R(A,B) one to one (1-1) A B

It is worth noticing that 1-1 is a particular case
of 1-N and N-1, and that 1-N and N-1 are particular
cases of N-N; hence, for example, any property of
N-N relations is also a property of 1-N, N-1 and
1-1 relations.

Existence constraint of an entity domain

This constraint consgists in forcing, at any
time, every entity of a domain to participate in a
tuple of a given relation. For instance if an em-
ployee always works in a department, the previous
example can be completed by the existence con—
straint

works~-in [EMPLOYEE] = EMPLOYEE

or, graphically :
works—in

EMPLOYEE P DEPARTMENT

Multi-domain identifier

The connectivity of a relation is an expres-
gion of the ability of a domain to identify the
other one; in the last example, an EMPLOYEE entity
identifies one DEPARTMENT entity via works-in. The
multi-domain identifiers of n—ary models, however,
seem to give rise to a problem.

The n-ary origin of the binary model allows us
to use some of the powerful tools of the n-ary
models and so to retrieve some power of the lost
paradise. Let-s assume the n-ary schema :

LINE-OF-ORDER (ORDER, PART, QTY)

which can be binarized into (see section 6):

such that:

LINE-OF-ORDER = OL*PL*LQ
[ORDER, PART, QTY]

The identifier of LINE-OF-ORDER can be expressed in

the binary schema by :
oL * PL

ORDER, PART - L—-OF-0

or, graphically, by :

218

4. TWO FAMILIES OF BINARY TRANSFORMATIONS

Now we are dgoing to define two 8sets of map~
pings that will allow us to transform a binary
schema into an other one in such a way that the
former can be deduced back from the latter without
information loss or noise (reversibility). These
mappings are simple and intuitive. They allow the
transformation of the information structure
(domains and relations) and of various integrity
constraints and of the semantics (meaning) as well;
the discussion will deal with information structure
only., Despite their simplicity, these mappings are
sufficient to generate a large range of the most
useful transformations [12].

The mappings could have been defined in the
generalized model. Yet their expression would have
been more complex and far from intuitive, essen-
tially due to the absence of graphical representa-
tion ; moreover, it can be proved that they are
also valid for other models (CODD-, E/R).

The mappings will be presented (without proof)
under the form of implication symbols between two
schemas; the symbols are topped by the expression
of the mapping. A concise notation will also be
provided to designate the objects concerned by the
mappings.

In the following, the names A, Ai, B,
either simple or entity domains.

C _designate

Introducing/removing an entity-domain

Under what circumstances can a new entity-
domain be introduced, and an existing one be re-—
moved ? Most problems can be solved on the basis of
the following mappings.

‘V(a,b)e R,
R create r in RAB

insert (a,r) in AR

insert (b,r) in BR;

H

RAB particip.
in AR,BR only

In concise notation : M1l : R===3)RAB, AR, BR
M12 : RAB, AR, BR=—=3R

This transformation is mainly intended for true N-N
relations; for the other connecgivities the M2 wmap-
pings include M1,

R Yaen,
create r in RAB
insert (a,r) in AR
¥b&R[a,B],
insexrt (b,r) in BR
-,

R = AR o BR
< RAB particip.
in AR,BR only

In concise notation : M21 : R ===)pRAB, AR, BR
M22 : RAB, AR, BR =—3R

Mappings M1l and M21 are useful to transform con-
structs that are not accepted by a particular model
or DBMS. Such will be the case for N-N relations,
repeating and optional attributes and recursive re—
lations in many DBMS. Mappings M12 and M22 make it
possible to clean and simplify a schema.

Elewentary examples.
a)Removing a recursive relation (a non-symetrical
recursive relation is oriented for designational

purpose).

M21: son==>PATHER, is,of
‘? of A

CUSTOMER M2l CUSTOMER
/)
CU# ACCOUNT# CU#
ACCOUNT#

c) Index generation (at the access level).

CUSTOMER M21 IDXSUPP

& ~

CU SUPPLIER# SUPPLIER# |CUSTOMER

Rotating a relation

These mappings transform a schema by "rotat—
ing" a relation from a domain to one or several
other ones. The idea is quite simple; if A is to be
connected to B, it can be connected to any identif-
jer of B and conversely. This <trivial idea gives
rise to one of the most powerful mapping family.
Its general form is as follows :

Ti=Ri o S
i=1l..n
S=
n
N(TioRi)
1
i ———_ -
JTi[C)=TF[C] i,j=1..n
S[B) & Ri[B]} n
i=1..n J(*ri){Aa1,a2,..,An]
1
n
& (*Ri)(A1,A2,..,An]
1
In concise notation:
M31 : S, R1, R2Z, ... Rn a===»T1, T2, ... Tn
M32 : T, T2, ... T™n, Rl, R2, ... Rn =5

For n = 2, the mapping is a bit simpler :

Tl =RloS
T2 = R2 0 S

S=T1oR1 n T20R2
pr—ee =

S[B] € R1[B]
S[B] € R2[B)

T1[C) = T2[C)
T1oT2 & RloT2

In concise notation : M4l : S, Rl, R2 ==»Tl, T2
M42 : T1, T2, Rl, R2 =S

Por n = 1, R (i.e. R1) must be 1-1. However the
mappings are still valid if S is a N-N relation,
which is unfortunately false for M3 and M4.

T=RoOS

L4

S=ToR

T[A] € R[A]

S{B] € R(B]

In concise notation : M51 : S, R=—33T (symetrical)

Note. Existence constraints on objects in the
source schema generally lead to simplexr properties
in the mappings. For example, if B is imposed ex-
istence constraints in Ri i=1..n, the constraints
S[B] € Ri[B] need not be mentioned.

Elementary examples.

a) Removing inter—entity relations.

0C=CCoCO |CUSTOMER| [ORDER]

CUSTOMER| ORDER
cC ocC
cc

c# c#
OC[C#] & cClC#]

b) Breaking a hierarchy.

SERVICE
TE=ETOE
s ST=ETOSE
EMPLOYEE]
T Ed

TEOST € EoOSE

5. A LOGICAL ACCESS MODEL AND ITS BINARY EXPRESSION.

Although the DBTG/DDIC schema proposals are a
fairly comprehensive set of concepts, a more gen—
exal and simple model has been preferred : the Log—
ical Access Model [13]. The data structures of this
model are quite familiar to application program—
mers; the data are described in terms of data base,
files, records, item values, identifier of a
record-type, access-keys and (inter-record)
access—paths, etc. (similar concepts can be found
in [6])

The basic objects to be accessed are the
records and the item values. The access mechanisms
are from record to item values, from item values to
recoxds (access-key) and from record to records
(access—-path). Given a special, single occurrence,
recoxrd type called SYSTEM, access—path types from
it easily model any kind of sequential access. It
should be noted that an access—path is basically
directed; if a record a is the origin of an
access-path to target records bl, bz, b3, the pro~
grammer can sequentially access bl, b2, b3 from a,
but cannot access a from, say, b2 via this access-

path,

Such structures, however, can be easily for-
malized by an extended binary model. Its domains
are Items (instead of simple domains) and Record-
Types (instead of entity domains). Relations on
these domains clearly express the access mechanisms
mentioned above. Thanks to this formalization, the
logical access level can take advantage of the
graphical binary representation, the relational ex-

" presgion of integrity constraints and especially

the mappings defined above.

The main differences between the pure binary
model and the binary logical access model are the
following :

220

(1) an access relation is directed from the origin
domain to the target domain; in the graphical
representation, the arcs will also be directed.

(2) the targets of an access relation are ordered.
(3) an access relation can be the inverse of anoth-
er one; this corresponds to the existence of an in-
verse access, For example, a CODASYL set <type is
described by (a) a 1-N access-path type and (b) its
N-1 inverse, since the FPIND OWNER primitive is al-
ways available. In the graphical representation,
two inverse access relations are signaled by a spe-—
cial symbol, or, more concisely, by a unique bi-
directed arc ; in the latter case, both relations
are given the same name.

An example of access structure :

AP-WORKS
; REC—-DEPART

E# NAME ADDRESS D% NAME

This schema contains the description of : (1) items
associated to record-type REC-EMPLOYEE, two of them
being accesa-keys, (2) items associated to recoxd-
type REC-DEPART, one of them being an acceas-key,
(3)access-path type AP-WORKS from REC-EMPLOYEE to
REC-DEPART and its inverse AP-WORKS from REC-DEPART
to REC-EMPLOYEE;

When applying the binary mappings to an access re-
lation which is given an inverse relation, it
should be emphasized that each of them can be
transformed independently of the other., However
the source relations can be transformed as a whole
by associating an inverse relation to each target
relation. For example, the Ml mappings can be
adapted as follows:

6. FIRST APPLICATION : coDDification of a binary
achema.

The problem to be solved is that of the trans-
lation of a schema from the binary model into the
CODD"S model. We first need a preliminary mapping,
given without proof:

any normalized relation R, defined on siwple
dowains, can be represented by (1) an entity
domain ER in bijective correspondence with R,
(2) binary relations between ER and each simple
domaings. Connectivity and multi-domain identif-
iers are derived from the identifiers of R.
Conversely, a normalized CODD schema can be
generated directly from a binary schema where:
(1) each relation is defined on an entity domain
and a simple domain, (2) each entity dowain par-
ticipates in at least one relation, (3) entity
domains are submitted to existence constraints
in each relation in which it participates ("the
attributes are mandatory") , (4) no N—-N or 1-N
relations from entity domains. R is the join of

the binary relations,

Example:

R(A, B, C, D)

Let us solve the problem for the following binary

schema :

[olo]

C# CNAME CHR-NAME O% DATE

Let us eliminate the inter-entity domain relations

M51 : CO, CC == CCO (xemoves CO)

M51 : OL, OO0 =% 00L (removes OL)

M51 : PL, PP ~==ip PPL. (removes PL)

and the optional and repeating attribute CHR-NAME :
M1l : CCH ==p-IDXCHRN,CCH1l,CCHZ -

ORDER LINE
oo/ Jcco OOL] [PPL

Of Ck+ DATE O# D% OTY

CCO[C#] & cC[C#]
OOL[O#] & 00O[O#]
PP \ PPL{P#] & PP[P#)

PH PRICE
The rotation of CCH1l from CUSTOMER to C# by

M51 : CCH1l, CC ==Jp>CCH3 leads us to:

CCH3[C#] & cC[C#)
cc N

[o CNRAME
and gives a schema ready for the final production :

CUSTOMER(C#, CNAME)
IDX-CHRN(C#, CHR-NAME) IDX-CHRN{C#] € CUSTOMER{C#]

ORDER(O#, C#, DATE) ORDER[O#] & CUSTOMER[C#)
LINE(O#, P%, QTY) LINE[O#] S ORDER[O#)
PART(P#, PRICE] LINE[P#) € PART[P#)

Comments

1. The process is systematic and therefore
easily performed by an algorithm. Since it is re-
versible, a similar algorithm can be designed to
generate a true binary schema from a CODD"S schema.

2. Translating an E/R schema into a CODD"S
schema is an easy task as well; the reverse trans-—
lation, however, is more difficult since in some

cases, distinguishing entities from relationships
has to be performed at the semantic level.

3. A binary (or E/R) schema can be translated
if every entity-domain (or Entity-type) can be
identified, directly or not, by one or several sim-
ple domains. Translation rules for the three models
can be found in [12].

4, Such problems have also been satudied in
[21.

7. SECOND APPLICATION : FROM A LOGICAL ACCESS SCHE-
MA TO A DBMS SCHEMA

The following example is only intended to
demonstrate the use of the mappings in a complex
design process. The main objective will be the
translation of a general access schema into data
structures valid for a given DBMS, The TOTAL system
has been chosen in this example because its res-—
tricted data structures (compared with CODASYL)
raise interesting problems.

Let us suppose that the result of the first algo—
rithm design (3rd step of the Namur Approach) has
led to the following access schema.

DATA4 AN

A record PERSON describes a person and a
recoxrd BANK describes a banking company; each of
them is identified by a numbex, PN for PERSON and
BN for BANK. A person who has at least one account
in a given bank is known to be a customer of this
company and this status is described by a record
CUST to which the records ACCOUNT describing the
accounts of the person are linked. An account is
identified in a bank by an account number (AN);
this can be declared by: "AAN and BCoCA (or BBNoB-
CoCA) are an identifier of ACCOUNT". On the other
hand, given a bank identifier BN and a value of AN,
it would be possible to access the unique
corresponding record.

The DATA of each record type will be ignored except
for the final schema; for reasons of simplicity,
the inverse N-1 access—-path <types will be given
specific names: PC”, BC” and CA-.

It will be useful to briefly specify the TOTAL
data structure restrictions in terms of the logical
access model concepts. TOTAL knows two classes of

record types; the MASTER record type, to which an

item, which is an access~-key and an identifier,
must be agssociated, and the VARIABLE-ENTRY record—

type that has no such item. One-to-many access—path
types without explicit inverse can be declared from
a Master record type to a Variable-entry record
type; the inverse access is automatically made
available by associating the access~key of the ori~-
gin with the target record-type.

Solving the problem consists in transforming
the structures of the source schema which cannot be
directly translated in the TOTAL data structures.

1. TOTAL doesn "t tolerate explicit N-1 access-path
types. This constraint will be satisfied by apply-
ing M51 mapping to the N-1 access-path types PC-,
BC" . The problem of CA" is more complex; let us try
the M4l mapping first.

M51 : PC", PPN ==<3>CPN (xremoves PC")
BC", BBN ==»CBN (removes BC")
CA", PC, BC==3PA, BA (removes CA")

PC° = CPN o PPN

BC" = CBN o BBN

CA" = (PAOPC)
(i BAOBC)

Remark.

Not only does the transformation ensure semantic
equivalence, as in a conceptual schema but it also
ensures access equivalence since PN and BN are
access-keys,

The problem of PA and BA which are explicit N-1
access-path types can be solved easily by applying

MS1
M51

PA, PPN =—3>APN
BA, BBN =35> ABN

(removes PA)
(removes BA)

A cleaned and completed schema can then be pro-
posed.

PA = APN o PPN
BA = ABN o BBN

ACCOUNT
APN AAN)\ ABN
PR aN

Since (AAN,BBNoBCoCA) is an identifier of account,
and ABN= BBNoBA=BBNOBCOCA", (AAN,ARBN) is also an
identifier of ACCOUNT. Moreover, the access to AC-
COUNT from AN and BN can now be stated explicitly
by an access key.

2, TOTAL doesn "t tolerate the Target of an access-
path type (CUST in this case) being itself the ori-
gin of an access—path type. Inserting new record
types into PC and BC allows CUST to be put at the
top level:

M21 : PC == DERCUST, PCC, PPC
M21 : BC =3 BANCUST, BCC, BBC

PERSON [Banx]
PRCA PCC)FA BCC 4 BBc

PN BN .
ACCOUNT]

PC = PPC o PCC
BC = BBC o BCC

IPERCUSTl

Being now a Master record-type, CUST must be asso-
ciated with an identifier/access-key; (PN, BN) has
of course been chosen.

(explicit N-1
BCC must be

3. For the same rxeason as in 1.
access-path type) , PCC and
transformed, e. g. by rotation:

M4l : PCC, CPN, CBN == PCPN, PCBN
M4l : BCC, CPN, CBN =—3BCPN, BCCN

PCPN PCBN

PN BN AN BN

222

PCC = (PCPNoCPN)(l(PCBNOCBN)
BCC = (BCPNOCPN){](BCBNOCBN)

4. The target of an access-path type is a
Variable-entity record-type and hence cannot be as-—
sociated with an access-key. Due to its access-key,
ACCOUNT must then be made a Master record-type. As
in 2, a M2l record-type insertion is a solution:

M21 : CA ===3> ACCUST, ACA, CAC

CA = CAC o ACA

N-1 access-path type ACA will be transformed by :

M4l : ACA, AAN, ABN —>ACAN, ACEN
so that ACA = (ACAN o AAN)()(ACBN o ABN)

Hence the final schema :

CUST
CPN J/CBN A

DATAL PN BN [CAC
-

ACCUST

BN AN

The translation rules between the source schema and
the final schema are the following:

— PERSON, BANK, CUST, ACCOUNT,PPN,BBN,AAN : no change
- access key to ACCOUNT : (AN via AAN, BN via ABN)
— PC = PPC o ((PCPNoCPN) {1 (PCBNoCBN))

PC = CPN o PPN

BC = BBC o ((BCPNOCPN) () (BCBNoCBN))

BC = CBN o BBN

CA = CAC o ((ACANoAAn) /) (ACBNGABN))

CA"= (CPNOPPNOPC) (1 (CENOBBNOBC)

Some integrity constraints are not made explicit in
the schema above; they are derived from the succes-—
sive mappings and can be most simply expressed by
"PC- i inverse of PC", "BC" is inverse of BC" and
"CA"~ is inverse of CA". ’

Conclusions

Thieg schema can be immediately translated into a
TOTAL DBDL text and in programming rules that will

223

ensure valid data base state with respect to +the
integrity constraints.

Furthermore, the algorithms of the application pro-~
grams can be expressed as working on the first ac~
cess schema which is both simpler and clearer than
the final one. The actual programs can be obtained
esgsentially by two methods. The first one consist
in hand-translating each statement making use of a
transformed substructure (PC,PC”,...) accoxrding to
the <translation rules given above; each of these
algebraic rules corresponds to a very simple algo-
rithmic expression. The second method is more com-
plex but provides the application programs with a
high level of Jlogical data independence. It con-
sists in translating each access statement into a
call to an access module dedicated to this data-
base and that carries out the mapping dynamically.
Using access modules is common practice in file and
d.b. programming; the above process, however, gives
acurate and stxict rules for the design of such
modules.

Although this schema has probably good performance,
our only goal was to obtain a TOTAL schema regard—
less of any performance criteria. Other TOTAL
schemas can be derived by transforming the invalid
substructures in another ordering; on the other
hand a TOTAL schema can be transformed into another
TOTAL schema, for instance by splitting or mexging
record-types or by migrating items. Such a process
can be considered as a "valid TOTAL schemas genera-—
tion"; it can be easily automated (this concept is
also described in [15}]).

It is worth noticing that the final schemas are
complete in that they contains the data structure
description, the translation of the initial in-
tegrity constraints and the dexived integrity con-
straints as well.

8. CONCLUSION

The paper is mainly concerned with the propo—
sal of a set of reversible transformations that are
both powerful and intuitive. They have been defined
for a binary model. This model, however, is con-—
gidered as a particular case of a generalized rela-
tional model. Consequently, the transformations are
also valid for other models such as CODD"S and E/R
models, considered as other particular cages of the
generalized model, Two applications of the
transformations have been developed within the
framework of the Information System Design Approach
of Namur. The first application is concerned with
the translation of a conceptual schema from a model
into another and the second application is con-
cerned with the adaptation of a logical access
schema to a given DBMS. An interesting feature of
the transformation is its ability to automatically
deduce integrity contraints that are frequently
forgotten in manual design procedures. The general-—
ity of the model and of the transformations makes
them well suited to the expression of such classi-
cal practices as record-type splitting, record-type
merging, conversion of flat files from network
structure and conversely, item migration, removing

of N-N or recursive relationship, etc ...

Besides its educational advantages [12], the

transformation can be starting point of general or

DBMS oriented functions of a CAD system for Data
Bases development.
9. REFERENCES
{1] ABRIAL J.R., "Data Semantics", in Data Base
Management, North-Holland, 1974.
[2) ADIBA, DELOBEL, LEONARD, "An unified approach

[3]1

{4]

(s}

(el

(7}

(8]
(9}

f10]

{11}

f12]

{13)

[14]

{15}

{16}

{18}

f19])

for modelling data in logical data base
design”" in Modelling in data base management
systems, North-Holland, 1976.

BENCI, BODART, BOGAERT, CABANES, "Concepts for
the design of a conceptual schema”, in Model-
ling in data base management systems, North-—
Holland, 1976.

BODART, PIGNEUR, "A model and a Language for
functional specifications and Evaluation of
Information System Dynamics™ in Formal Models
and Practical tools for Information Systems
Design, North—-Holland, 1979.

BRACCHI, PAOLINI, PELAGATTI, "Binary Logical
Associations in Datao Modelling” in Modelling
in data base management systems, Noxrth—
Holland, 1976.

CABANES A., "Rapport Independance dans les
SGBD", 1Institut 4" Informatique 4 Entreprise,
CNAM, Paris (Mars 1977).

CHEN P.P., "The Entity-Relationship Model : to-
ward a unified view of Data, ACM TODS 1,1,
1976.

CODASYL DDLC report. Information Systems 3, 4,
1978.

CODD E.F., "A Relational Model of data for

large, shared Data Banks", CACM, 13, 6, 1970.
CODD E.P., "Extending the data base relational
model to capture more meaning", IBM RJ2472,
1979.
HAINAUT, LECHARLIER, "An extensible semantic
model of data bases", Proc. IFIP Congress
1974, North~Bolland.
HAINAUT, “Modéles conceptuels”, Lecture notes,
Public., Institut 4 Informatique, Namur, 1980
(french).
HAINAUT, “Un modéle de description de fichiers
:+ le modeéle d-accés”, Lecture notes, Public.
Institut & Informatique, Namur, 1980 (french).
HALL, OWLETT, TODD, "Relations and Entities”,
in Modelling in Data Base Management Systems,
Noxth~Holland, 1976.
IRANI, PURKAYASTHA, TEOREY, "A designer for
DBMS-processable logical database structures”,
Proceedings VLDB, 1979.
MITOMA, IRANI, “"Automatic Data Bases Schema
Design" Proc VLDB 1975, ACM (1975). [17]
PIROTTE, "Explicit description of entities and
their manipulation in languages for the rela-
tional data base model”, Thase de doctorat -
Universiteée libre de Bruxelles, 1976.

TARDIEU, NANCI, PASCOT, “Conception d’un
systéme 4 information", Les Editions
d-Organisation/Ga#tan Morin, 1979.

TEOREY, PRY, "The logical access approach to
database design", Computing Surveys, 12, 2,

224

1980.

[20] "Data Structure Models for Information Sys-

tems", "Proc. Intern. Workshop of Namur,
1974, Presses Universitaires de Namur (1975).

